Assimilation of GPS radio occultation measurements at the Met Office

by Michael Rennie

Presentation to GRAS SAF Workshop on Applications of GPS radio occultation Measurements, 16 -18 June 2008
Talk outline

1. Met Office assimilation system / observation operator
2. Status of RO in operations
3. Recent impact studies
4. Future developments
Met Office system: brief summary

- NWP model is the Unified forecast model (UM):
 - Non-hydrostatic equations
 - Height as the vertical co-ordinate.
 - Charney-Philips grid-staggering in the vertical.
 - Terrain-following near the surface.

- Variational data assimilation system (VAR):
 - Incremental 4D-Var.
 - Uses perturbation forecast (PF) model to map background error info to the time of the observations
 - PF has simplified linearised physics, rather than direct tangent linear/adjoint of non-linear UM.
RO assimilation method within VAR:

• Given state vector x_1 on the 1^{st} iteration:
 • Forward model N using non-linear operator: $y_1 = H(x_1)$
 • Calculate local gradient i.e. jacobian, sometimes called K matrix:
 $$\frac{\partial y_1}{\partial x_1} = \frac{\partial H(x_1)}{\partial x_1} = K$$

• Store x_1, y_1 and the K matrix.

• On subsequent iterations given incremented state vector x_n:
 • apply the tangent-linear approximation to estimate $y(x_n)$:
 $$y_n = y_1 + K(x_n - x_1)$$
 • Use y_n and K^T matrix to calculate on n^{th} iteration:
 • Observation cost function (J_{obs}):
 $$J_{\text{obs}}(y_n - y_{\text{obs}})^T R^{-1} (y_n - y_{\text{obs}})$$
 • Gradient of J_{obs} wrt x:
 $$\frac{\partial (J_{\text{obs}})}{\partial x_n} = \left(\frac{\partial y_1}{\partial x_1} \right)^T R^{-1} (y_n - y_{\text{obs}}) = K^T R^{-1} (y_n - y_{\text{obs}})$$

• Total GPSRO J_{obs} and gradient information used with contributions from other observation data in the minimisation problem to produce an updated x.
1. Interpolate model column data to occ time and location: to give \(x \)

2. Interpolate Exner from \(\rho \) to \(\theta \) levels to get \(P \) on \(\theta \) levels

3. Calculate layer mean virtual temperature on \(\theta \) levels

4. Calculate layer mean temperature on \(\theta \) levels, using RH

5. \(N \) calculated on \(\theta \) levels using Smith-Weintraub formula

6. \(N \) interpolated to obs heights
1D refractivity operator
strengths/weaknesses

• Strengths:
 • Simple and quick.
 • No extrapolation above model top, as required for BA.

• Weaknesses:
 • A priori data introduced high up (>~25 km) from climatology in N data.
 • R matrix more complicated for N than BA?

• Future updates:
 • Use q instead of RH.
 • Adjust code for BA assimilation.
 • Met Office system not yet capable of incorporating 2D operators.
GPSRO used in global model

- **UM:**
 - Ran at N320L50 i.e. ~40 km mid lat horizontal resolution, 50 vertical levels, top ~ 0.1 hPa (~63 km).
 - Forecasts out to 6 days.

- **VAR:**
 - 6 hour assimilation window.
 - First iteration non-linear using N320 3, 6, 9 hour forecast background information.
 - Subsequent tangent-linear iterations use increments to model columns.
 - Non-linear iteration is ran on every 10th iteration.
 - Other significant data types assimilated: Sonde, IASI, AIRS, ATOVS, Aircraft, Satwind, Scatwind, Surface, SSMI, SSMIS
Global model: GPSRO specific

- Use R matrix for low, middle and high latitudes.
 - Based on $(O-B)/B$ std dev using COSMIC.

![Graph showing models of R matrix standard error](image)

- Assume an exponentially decaying vertical correlation model with a scale length of 3.3 km.

- QC of N data based on output of a 1D-Var.

\[R_{ij} = \sigma_i \sigma_j \exp \left(-\frac{|z_i - z_j|}{H} \right) \]
Global model operational status

- CHAMP+ GRACE-A (GFZ) switched on.
- CHAMP+ GRACE-A withdrawn - data problems.
- 4 COSMIC sats switched on, FM2,3,5 and 6.
- COSMIC withdrawn - model crash. Later shown unrelated to COSMIC.
- Increase to all COSMIC sats.
- COSMIC reinstated. Latitude varying R matrix.
- Increase vertical range of assim from 4-27 to 0-40 km.

© Crown copyright Met Office
Number of N profiles assimilated in global model

Update run to produce better background for next run

• Assimilated = COSMIC data
• Available = COSMIC + GRAS + GRACE - A + CHAMP
Impact studies: increasing vertical range

- Increasing the vertical range of assimilation from 4-27 km to 0-40 km gave a small benefit to:

 - Tropospheric relative humidity in extratropics.
 - Winds - highly valued by customers.
 - Stratosphere model bias.

- Routine verification against sondes and analyses is only up to 50 hPa (~21 km).
Forecast RMS % diff. against obs (mainly radiosondes)

Control = 4-27 km

Exp = 0-40 km
Jun 2007
Stratosphere global model bias compared to COSMIC

- BA $(O-B)/B$ stats show a distinct ‘S’ shape bias at > 50 hPa (~22km, around model level 35).

- ECMWF stats shown for comparison: has its own biases

See latest GRAS SAF monitoring: http://monitoring.grassaf.org
Impact on bias of RO up to 40 km

- Stratospheric bias reduced by N assimilation up to 40 km.

- Plot uses BA before statistical optimisation.
Impact of using more RO data

• More data seen to increase magnitude of the impact:

 • Dec 2006, going from 4 to all 6 COSMIC sats.

 • Jun 2006, going from 4 COSMIC to (6 COSMIC +CHAMP+GRACE-A).

 • Jan 2008, GRACE-A and CHAMP (GFZ) on top of COSMIC. Small improvements in geopotential height.

• Would be interesting to run experiment using incrementally more data - how saturated with RO are we?
Forecast RMS % diff. against obs, Dec 2006 trials

Increase in no. of occultations:

6 COSMIC vs no GPSRO
Forecast RMS % diff. against obs, Jun 2007 trials

Increase in no. of occultations:

6 COSMIC +CHAMP+ GRACE vs no GPSRO
GPSRO in limited-area models

• Ob types implemented into the global model then go into limited-area models with relatively little testing.

• Concerns higher horizontal resolution - problems using 1D N operator.

• Ran test of N assimilation using 1D operator.
NAE (North Atlantic and European) area
NAE test setup

- 24 km resolution (half operational res. to reduce time).
- 38 vertical levels, ~40 km model top. 4D-Var.
- Typically around 20-30 occs assimilated per cycle. All COSMIC +CHAMP+GRACE-A, using 0-40 km vertical range.
- 20 day period of testing from 24/04/08 to 26/05/08 (with some gaps)
NAE test results

• Verified using limited area **NWP index**. A Met Office score system based on comparisons to observed fields useful in limited-area model forecasting:

 • Surface visibility, 6 hr precipitation accumulation, total cloud amount, cloud based height (3/8 Cover), surface temp. and surface wind.

• Saw a small **overall improvement**. Particularly in surface visibility.

• NAE area NWP index increased by +0.13 %, i.e. slightly positive. UK area NWP index +1.23%, although significance in question over limited area and short period.
Some GPSRO in NAE verification

Mean error

RMS error

68% error bars calculated using $S/(n-1)^{1/2}$
Future updates/plans

 - **Global model**: use of MetOp GRAS (10-30 km vertical range), CHAMP+GRACE-A (GFZ) on top of COSMIC.
 - **NAE model**: use of COSMIC, CHAMP and GRACE-A (0-40 km):

- **Further tuning** of system:
 - Obs errors and correlations.
 - Vertical ranges.

- **Experiment** with BA assimilation
Any questions?