

ECMWF Annual Seminar 2008

Motivation MIR 2

The real world and GCMs are complex systems ...

 Can use hierarchy of simpler models to understand processes and develop parametrizations.

But

- The fully complex system may behave differently. For example due to interactions.
- It is the fully complex system that is used to produce the forecast!

Hence ...

 There is a need to develop diagnostics that help us understand the physics, dynamics and interactions within the fully complex system.

Talk Outline

Annual cycle of the global circulation

- Systematic errors in seasonal integrations
- Introduction to the case study: aerosol change
- Statistically significant global changes

Understanding the local physics

- Analysis Increments and Initial Tendencies
- Perturbed physics example: reducing climate change uncertainty

Understanding the tropic-wide response

- Tropical waves
- Coupling with convection

Understanding the extra-tropical response

- The tropical control of the divergent wind
- Balances in the vorticity equation
- Extra-tropical physics and PV

Annual Cycle of the Global Circulation

Mean Annual Cycle: Precipitation, V₉₂₅ & Z₅₀₀

JJA

DJF

- INTER-TROPICAL CONVERGENCE ZONE
- MONSOONS
 - SEASONAL CYCLE OF RAINS
 - CONVECTIVE HEATING
- SUBTROPICAL ANTICYCLONES
 - DUALITY WITH MONSOON HEATING
 - RADIATIVELY IMPORTANT STRATOCUMULUS
 - DEEP CONVECTION (SPCZ ETC)
- EXTRATROPICAL STORMTRACKS
 - STRONG VORTICITY GRADIENTS
 - SENSITIVITY TO TROPICAL FORCING

Precipitation: Xie-Arkin 1979/80 – 1998/99

V₉₂₅: ERA40 1962-01

Z₅₀₀: ERA40 1962-01, CI=10 dam

Old and New Aerosol Optical Thickness

OLD (NO ANNUAL CYCLE)

NEW (JULY)

OPTICAL
DEPTH d AT
550nm

ATTENUATION FACTOR = e^{-d}

SINGLE SCATTERING ALBEDO FOR DESERT AEROSOL ≈ 0.9

SOIL DUST IS IMPORTANT

 SOIL DUST ABSORBS AS WELL AS SCATTERS

Old: C26R1 (Tanre et al. 1984), New: C26R3 (Tegen et al. 1997).

June – August Precipitation, v925 and Z500

Precip: Xie-Arkin 1980–1999. <u>V</u>925, Z500: ERA40 1962-01, (a) 10, (b)-(d) 2 dam. 26R3 seasonal data for the same period

Understanding the Local Physics

DJF T500 Medium-range Mean Forecast Error

Based on DJF 2006/7 operational analyses and forecasts. Significant values (5% level) in deep colours.

Data Assimilation Cycle: Perfect Model

Data Assimilation Cycle: Imperfect Model

-Mean Analysis Increment = Mean Net Initial Tendency ("I.T." in, e.g., Kcycle⁻¹)

= Mean Convective I.T. + Mean Radiative I.T. + ... + Mean Dynamical I.T. (summed over all processes in the model)

MAM Mean Analysis Increments: T and (v,w)

MAM Mean Forecast Error D+5: T and (v,w)

UNIT=0.01K
-52 -20 -12 -4 4 12 20 76 -52 -20 -12 -4 4 12 20 76

Confronting models with observations

T500 Analysis Increment

See Rodwell & Jung, ECMWF Newsletter Autumn 2008

Observed – First Guess Brightness Temperature AIRS ch 215 (~T500)

DJF 2007/8

Amazon Initial Process Tendencies

PROCESS TENDENCIES
BALANCE WELL – LEADING TO
A SMALL NET TENDENCY

IMBALANCE LEADS TO LARGE NET TENDENCIES – INDICATIVE OF PHYSICS ERROR

Amazon = $[300^{\circ}\text{E}-320^{\circ}\text{E}, 20^{\circ}\text{S}-0^{\circ}\text{N}]$. Mean of 31 days X 4 forecasts per day X 12 timesteps per forecast (January 2005). 70% confidence intervals are based on daily means. CONTROL model = 29R1,T159,L60,1800S.

JJA Precipitation, v925 and Z500. New-Old

North Africa Jul 2004 T Tendencies (New-Old)

North Africa = $[5^{\circ}N-15^{\circ}N, 20^{\circ}W-40^{\circ}E]$. Mean of 31 days X 4 forecasts per day X 12 timesteps per forecast. 70% confidence intervals are based on daily means. CONTROL model = 29R1,T159,L60,1800S.

Local Response to Aerosol Reduction

Understanding the Tropic-wide Response

Tropical Waves: Outgoing Long-wave Radiation

Plots from Thomas Jung. OLR data from NOAA

Shallow Water Equations on the β-plane

(Here, for understanding tropical atmospheric waves)

Baroclinic mode:

$$\varepsilon \ll \eta$$
 $u \equiv u_1 - u_2$ $v \equiv v_1 - v_2$

Momentum:

$$\frac{\partial u}{\partial t} - \beta y v + g' \frac{\partial \eta}{\partial x} \approx 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + \beta \mathbf{y} \mathbf{u} + \mathbf{g}' \frac{\partial \eta}{\partial \mathbf{y}} \approx \mathbf{0}$$

Continuity:

$$\left(\frac{1}{H_1} + \frac{1}{H_2}\right) \frac{\partial \eta}{\partial t} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) \approx 0$$

Solving for v:

$$\frac{\partial}{\partial t} \left\{ \frac{\partial^2 \mathbf{v}}{\partial t^2} + \beta^2 \mathbf{y}^2 \mathbf{v} - \mathbf{c}_e^2 \left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} \right) \right\} - \mathbf{c}_e^2 \beta \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \mathbf{0}$$

$$g' \equiv g \left(1 - \frac{\rho_2}{\rho_1} \right)$$
 "reduced gravity"

$$c_{\rm e}^2 \equiv g' \frac{H_1 H_2}{H_1 + H_2} \equiv g H_{\rm e}$$
 $c_{\rm e} \approx 20 \text{ to } 80 \text{ms}^{-2}$

 $c_{\rm e}$ is the propagation speed of a barotropic gravity wave in single layer of depth $H_{\rm e}$

Free Equatorial Waves

$$u = u_0 e^{-y^2/2} e^{ik(x-c_e t)}$$

East propagating Kelvin Wave

- Non-dispersive
- In geostrophic balance

$$v = \hat{v}(y)e^{i(kx-\omega t)}$$

Substitute into equation for v

Structures

(Meridional structures are solutions to Schrodinger's simple harmonic oscillator)

$$\hat{v}(y) = \begin{bmatrix} 1 \\ 2y \\ 4y^2 - 1 \\ 8y^3 - 12y \\ \vdots \\ H_n(y) \end{bmatrix} \quad e^{-y^2/2}$$

Hermite Polynomials: $H_n(y)$

- Each successive polynomial has one more node
- Modes alternate asymmetric / symmetric about equator

Dispersion

(How phase speed is related to spatial scale)

$$\left(\frac{\omega^2}{c_e^2} - k^2 - \frac{\beta k}{\omega}\right) = (2n+1)\frac{\beta}{c_e}$$

$$(n = 0, 1, 2, ...)$$

For n \neq 0: 3 values of ω for each k

- West propagating Rossby Wave
- E & W propagating Gravity Wave

For n=0: 2 values of ω for each k

• E & W prop. Mixed Rossby-Gravity

Wave Spotting

Colours show height perturbation (red positive, blue negative), arrows show lower-level winds

Interpretation of Free Equatorial Waves

Symmetric waves. Observed OLR (NOAA)

DJF 1990-2005. Following Wheeler and Kiladis (1999). Convective coupling generally reduces phase speed

Symmetric waves. Simulated OLR (ECMWF)

Model cycle: 32R3, resolution: T159L91, DJF 1990-2005

Asymmetric waves. Observed OLR (NOAA)

Asymmetric waves. Simulated OLR (ECMWF)

Model cycle: 32R3, resolution: T159L91, DJF 1990-2005

Gill's steady solution to monsoon heating

DAMPING/HEATING TERMS TAKE THE PLACE OF THE TIME DERIVATIVES

EXPLICITLY SOLVE FOR THE X-DEPENDENCE

GOOD AGREEMENT WITH THE AEROSOL CHANGE RESULTS (OPPOSITE SIGN):

- NORTH ATLANTIC SUBTROPICAL ANTICYCLONE
- CONVECTIVE COUPLING IN KELVIN WAVE REGIME

Colours show perturbation pressure, vectors show velocity field for lower level, contours show vertical motion (blue = -0.1, red = 0.0,0.3,0.6,...)

Following Gill (1980). See also Matsuno (1966)

JJA Precipitation, v925 and Z500. New-Old

Understanding the Extra-tropical Response

Upper Troposphere Divergent Wind Anomaly

New minus Old aerosol. Anomaly is integrated between 100 and 300 hPa

The Vorticity Equation

Motivation (2D flow):

$$\zeta_{z} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \quad \left(\equiv \hat{\mathbf{k}} \cdot \nabla_{z} \times \mathbf{v} \right)$$

 \hat{k} is the unit "vertical" vector and ∇ , \times is the horizontal curl operator

Curl of the 3D momentum equation in absolute frame of reference:

$$\frac{d\underline{\zeta}}{dt} = -\underline{\zeta} (\underline{\nabla} \cdot \underline{u}) +$$

tendency in absolute vorticity

Lagrangian Divergence

Barotropic Vorticity Equation

 Making the shallow atmosphere approximations and assuming barotropic, frictionless, horizontal flow

$$\frac{\partial \underline{\zeta}}{\partial t} + \underline{v}_{\psi} \cdot \underline{\nabla} \zeta = -\underline{\nabla} \cdot (\underline{v}_{\chi} \zeta)$$

$$= -\underline{\zeta} \underline{\nabla} \cdot \underline{v}_{\chi} - \underline{v}_{\chi} \cdot \underline{\nabla} \zeta$$
"Rossby Wave Source"

- Application to simple models: Sardeshmukh and Hoskins (1988).
- For use in complex GCMs, it is found here to be useful to vertically integrate this equation between 100 and 300 hPa.
- Is the extra-tropical mean response a linear stationary-wave solution?

$$\underline{\mathbf{v}}_{\psi}^{\prime} \cdot \underline{\nabla} \overline{\zeta} + \underline{\mathbf{v}}_{\psi} \cdot \underline{\nabla} \zeta^{\prime} \approx -\overline{\zeta} \underline{\nabla} \cdot \underline{\mathbf{v}}_{\chi}^{\prime} - \underline{\mathbf{v}}_{\chi}^{\prime} \cdot \underline{\nabla} \overline{\zeta} \quad (?)$$

JJA Balance in Vorticity Equation New-Old

Rossby Wave Source

Advection by Anomalous Rotational Wind

Advection of Anomalous Vorticity

JJA New-Old RWS, $\underline{\mathbf{v}}_{\chi}$, Ψ and mean ζ

Rossby wave paths agree beautifully with those predicted by Hoskins and Ambrizzi (1995)

JJA Precipitation, v925 and Z500. New-Old

The December—February Season

DJF Precipitation, v925 and Z500

Precip: Xie-Arkin 1980–1999. V925, Z500: ERA40 1962-01, (a) 10, (b)-(d) 2 dam. 26R3 seasonal data for the same period

DJF New-Old RWS, $\underline{\mathbf{v}}_{\chi}$, Ψ and mean ζ

Precipitation / RWS agreement suggests possibility for interaction with extra-tropical physics Rossby wave path agrees with that predicted by Hoskins and Ambrizzi (1993)

Summary

Physics changes have global implications!

- Statistical tests can reveal which aspects are attributable to a change
- To understand why, a set of diagnostic tools is needed

Analysis Increments and Initial Tendencies

- Useful to help understand local physics changes (and subsequent interactions)
- Different from climate simulations and single column experiments

Equatorial waves

- Help explain the mean tropic-wide response
- Linear waves can 'set the scene'
- Coupling with convection enhances the response

Extra-tropical Rossby waves

- Help explain the mean extra-tropical response
- Understanding is aided by linearity
- Extra-tropical interaction with physics could be studied with PV approach

