Parameterization of Boundary Layer Clouds:

A GCSS perspective

A. Pier Siebesma <u>siebesma@knmi.nl</u> chair GCCS KNMI, De Bilt, The Netherlands

Technical University Delft Multiscale Physics Group Delft, The Netherlands

ECMWF-08

The Zoo of Atmospheric Models

GEWEX Cloud Systems Studies (GCSS)

(Simplified) Working Strategy

See http://www.gewex.org/gcss.html

Large Eddy Simulation (LES) Models Cloud Resolving Models (CRM)

Testing

Evaluation

ECMWF-08

History and Progress in Convential Parameterizations for the Cloudy PBL

Grid Averaged Equations of thermodynamic variables

 $\bullet \bullet \bullet \bullet$

9/2/2008

ECMWF-08

Introduce moist conserved variables!

$$\theta_l \approx \theta - \frac{L}{c_p \pi} q_l$$

•Liquid water potential Temperature

 $q_t \equiv q_v + q_l$

•Total water specific humidity

Parameterization issue reduced to finding the subgrid fluxes

 $\bullet \bullet \bullet \bullet$

9/2/2008

ECMWF-08

Stratocumulus : characteristics and used variables

Courtesy : Bjorn Stevens

Stratocumulus (2)

A long history in GCCS.

Experiment	Case	year
FIRE	Nocturnal Scu	1994
Idealized		1995
Smoke case		
ASTEX	Langrangian case	1995
ASTEX	Nocturnal	1996
FIRE	Diurnal cycle	2002
DYCOMSII	Nocturnal Scu	2003
DYCOMSII	Nocturnal Scu	2005
	Precipitating	

Stratocumulus (3)

Experiment	Case	year
FIRE	Nocturnal Scu	1994
Idealized Smoke case		1995
ASTEX	Langrangian case	1995
ASTEX	Nocturnal	1996
FIRE	Diurnal cycle	2002
DYCOMSII	Nocturnal Scu	2003
DYCOMSII	Nocturnal Scu Precipitating	2005

Spread of LWP in LES too large to constrain SCM's and parameterizations due to :

- case not well constrained.
- Numerics and resolution of the LES models not good enough to deal with strong inversion.

LES Results (first case 1994)

Stratocumulus (4)

Courtesy: Steve Krueger

Era of maturing (1995-2002): •Better constraint cases •Improved advection schemes for LES •Higher Resolution.

Making of the theory and Parameterizations:

- •Identification of top-entrainment as a key process
- •Theories and parameterizations of entrainment.
- •Theories of decoupling of Scu./ cloud-top entrainment instability (Randall 1980)

Stratocumulus : Top-entrainment (1)

Computation of the flux
$$\overline{\mathbf{w}'\psi'} = -\mathbf{K}_{\psi} \frac{\partial \psi}{\partial \mathbf{z}}$$

 $\psi \in \left\{ q_t, \theta_l \right\}$

Representation of entrainment rate w:

 $\overline{w'\psi'_e} = w_e \Delta \psi$ w_e from parametrization

Analogous to the dry PBL: $w_e = A \frac{w_* \theta_{v,*}}{\Delta \theta} \approx \frac{"energetics"}{"jump"}$

In Scu many more parameters enter into the energetics:.

Surface moisture flux.

Surface sensible heat flux.

Condensation/evaporation processes.

Long-wave radiative cooling.

ECMWF Temperature and humidity jumps at inversion

9/2/2008

No lack of rules/parameterizations of the entrainment velocity

• Nicholls and Turton (1986)

$$w_{e} = \frac{2.5 AW_{NE}}{\Delta \theta_{v,NT} + 2.5 A (T_{2} \Delta \theta_{v,dry} + T_{4} \Delta \theta_{v,sat})}$$

$$w_{e} = \frac{A_{DL}W_{NE,DL}}{\Delta\theta_{v,DL} + A_{DL}(L_{2}\Delta\theta_{v,dry} + L_{4}\Delta\theta_{v,sat})}$$

Stage and Businger (1981)
Lewellen and Lewellen (1998)
VanZanten et al. (1999)

$$w_{e} = \frac{AW_{NE}}{T_{2}\Delta\theta_{v,dry} + T_{4}\Delta\theta_{v,sat}}$$

$$w_{e} = \frac{2A_{AL}W_{NE} + \alpha_{t}A_{W}\Delta F_{L}/(\rho c_{p})}{\Delta \theta}$$

$$w_e = - \Delta \theta_v$$

$$w_{e} = \frac{A_{M}\overline{w'\theta_{1}'} + \Delta F_{L} \left(3 - e^{-\sqrt{b_{m}L}}\right) / \left(\rho c_{p}\right)}{\Delta \theta_{1}}$$

ECMWF-08

• Moeng (2000) 9/2/2008

Stratocumulus : Entrainment velocities: Observations vs Parameterizations

Entrainment velocities (cm/s) of 3 GCSS Cases

			1 6	
	FIRE	D	ASTEX A209	ASTEX RF06
Observed	-	0.3	$1.1 {\pm} 0.5$	1.2 ± 1
LES	0.58 ± 0.08	0.:	1.2 ± 0.3	1.9 ± 0.1
NT	0.38	0.7	1.21	1.86
Lock	0.19	0.3	0.85	1.13
SB	0.38	0.8	0.76	1.18
Moeng	0.57	0.6	1.35	1.53
Lilly	0.37	0.7	0.99	1.42

Incorporating DYCOMS results: narrowing down parametrizations!

Did it made a difference?

Yes, especially for those operational centres that actively participated in this process: i.e. ECMWF, Met. Office, Meteo France.

Example:

ECMWF: cloud fraction climatology 2002: underestimation of Scu (general GCM-problem)

model - obs +

Courtesy: Martin Kohler

Total Cloud Cover ej3z September 2000 nmonth=12 nens=3 Global Mean: 57.9 50N-S Mean: 55.6

Total Cloud Cover ISCCP D2 September 2000 nmonth=12 50N-S Mean: 62.2

Difference ej3z - ISCCP 50N-S Mean err -6.6 50N-S rms 13.1

9/2/2008

Did it made a difference?

Yes, especially for those operational centres that actively participated in this process: i.e. ECMWF, UK Met. Office, Meteo France, NCAR

Example:

ECMWF: cloud fraction climatology 2007: Scu underestimation problem resolved.

Tropics

Difference exw9 - ISCCP 50N-S Mean err -0.725 50N-S rms 8.34

45°E

90°E

45°W

9/2/2008

Lessons to be learned!!

- use observations and models to identify the weak spots (top-entrainment)
- advance theories to improve representation (entrainment closures)
- design critical field experiments (DYCOMS)
- Implement the findings in Large-scale models (ECMWF)
- Critically evaluate the result on a global scale (ISSCP,CERES,SSMI)

9/2/2008

LES results S. Krueger, Univ of Utah •Mixing in Scu should be done in moist conserved variables

•Key problems : Regime changes : Break up of Scu / decoupling

•For higher(vertical) resolution (dz~100m), TKE-schemes without explicit topentrainment seem to be an acceptable alternative for parameterizations with explicit top-entrainment parameterizations.

Key Cloud-types that have been studied in GCCS

Shallow Cumulus: Characteristics

Courtesy Bjorn Stevens

-0.5

-1

less distinct updrafts in subcloud layer

0

w (m/s)

0.5

 $\bullet \bullet \bullet \bullet$

2-9-2008

ECMWF-08

1

1.5

Strong bimodal character of joint pdf has inspired the design of mass flux parameterizations of turbulent flux in Large scale models

(Betts 1973, Arakawa& Schubert 1974, Tiedtke 1988)

How to estimate updraft fields and mass flux?

The old working horse:

Entraining plume model:

Betts	1974 JAS
Arakawa&Schubert	1974 JAS
Tiedtke	1988 MWR
Gregory & Rowntree	1990 MWR
Kain & Fritsch	1990 JAS
And many more	

$$\begin{aligned} \frac{\partial \phi_c}{\partial z} &= -\varepsilon(\phi_c - \overline{\phi}) \text{ for } \phi \in \left\{\theta_1, q_t\right\} \\ \frac{1}{M} \frac{\partial M}{\partial z} &= \varepsilon - \delta \\ \frac{1}{2} \frac{\partial w_c^2}{\partial z} &= -b\varepsilon \, w_c^2 + aB, \quad B = \frac{g}{\theta_0} \left(\theta_v - \overline{\theta_v}\right) \end{aligned}$$

Plus boundary conditions at cloud base.

 $\bullet \bullet \bullet \bullet$

2-9-2008

ECMWF-08

GCSS cases

Experiment	Case	year
BOMEX	Steady state Trade wind cu	1997
ATEX	Trade wind cu topped with Scu	1998
ARM (June 1997)	Diurnal Cycle Cumulus	2000
RICO	Precipitating trade wind cu	2006

Typical LES results from GCSS intercomparison studies

Main Results:

- 1. Lateral entrainment and detrainment rates typically of the order of 10⁻³ m⁻¹
- 2. Detrainment rates typically larger than entrainment rates or
- 3. Mass flux decreases with height

ECMWF-08

Siebesma and Cuypers JAS 95 Siebesma 1998 Grant and Brown QJRMS 1999 Gregory QJRMS 2000 Neggers et al JAS 2002

Led to simple conceptual models for entrainment rates

Shallow Cumulus: Lateral Detrainment Rates

•Detrainment has received less attention than entrainment.

•Varies much more from case to case so is probably more important to parameterize mass flux correctly

FIGURE 3: Hourly averaged fractional entrainment (a) and detrainment (b) rates diagnosed from LES results for the ARM case. Note the different x-axis scale for (a) and (b).

9/2/2008

ECMWF-08

Change in cloudcover when setting the entrainment rate of the updraft in the subcloud layer to zero:

9/2/2008

ECMWF-08

Intercomparison case based on precipitating cumulus observed during field campaign RICO:

Observed precipitation rate during suppressed period : ~20W/m2 = 0.6 mm/day

Does precipitation from these shallow clouds matter?

Precipitation Histogram of JJA for 1991-1995 for the Rhine catchment area with a regional climate model (RACMO) (25km resolution)

Ctl (23r4) :

•Too few low precipitation rate events.

•Too many high precipitation rate events

Ctl (31r1) :

•Too many low precipitation rate events.

- •Too few high precipitation rate events
- •Lower extreme events!!

Howcome?

Control (23r4) :

clouds shallower than 3000m are not allowed to precipitate:

- Obviously reduces the "moderate rain intensity events"
- Allows more extreme rain events to build up.

2-9-2008

New (25r4) :

In which all clouds are allowed to precipitate (if enough ql):

- Obviously encourages the "moderate rain intensity events"
- Prohibits more extreme rain events to build up.

2-9-2008

So as a (temporary) fix:

.....One can prohibit clouds of 1500m to precipitate

•This merely shows the sensivity of the overall precipation statistics to the precipitation efficiency of shallow clouds!!

2-9-2008

Standard (schizophrenic) parameterization approach:

 $\frac{\partial \overline{\phi}}{\partial t} \cong -\frac{\partial}{\partial z} \left(\overline{w' \phi'} \right) + \overline{S}$

This unwanted situation can lead to:

•Double counting of processes

Inconsistencies

•Problems with transitions between different regimes:

dry pbl → shallow cu

scu → shallow cu

shallow cu →deep cu

 $\bullet \bullet \bullet \bullet$

ECMWF-08

The "parameterization dish" looks perhaps a bit messy.

Intermezzo (2)

Increase consistency between the parameterizations! How?

Eddy-Diffusivity/Mass Flux approach : a way out?

•Nonlocal (Skewed) transport through strong updrafts in clear and cloudy boundary layer by advective Mass Flux (MF) approach.

•Remaining (Gaussian) transport done by an Eddy Diffusivity (ED) approach.

Advantages :

- •One updraft model for : dry convective BL, subcloud layer, cloud layer.
- •No trigger function for moist convection needed
- •No switching required between moist and dry convection needed

LeMone & Pennell (1976, MWR)

Cumulus clouds are the condensed, visible parts of updrafts that are deeply rooted in the subcloud mixed layer (ML)

 $\bullet \bullet \bullet \bullet$

02/09/2008

ECMWF-08

Cumulus Topped Boundary Layer

•Assume a Gaussian joint PDF(θ I,qt,w) shape for the cloudy updraft.

•Mean and width determined by the multiple updrafts

•Determine everything consistently from this joint PDF

$$a, w_u, \theta_{l,u}, q_{t,u}$$

An reconstruct the flux:

$$\overline{w'\psi'} = a_u w_u (\psi_u - \overline{\psi})$$

Remarks:

- •No closure at cloud base
- •No detrainment parameterization
- •Pdf can be used for cloud scheme and radiation

A slow, but rewarding Working Strategy

See http://www.gewex.org/gcss.html

Large Eddy Simulation (LES) Models Cloud Resolving Models (CRM)

Testing ECMW9-08 **Evaluation**

But... Many open problems remain

Conceptually on process basis

- •Convective Momentum Transport
- •Influence of Aerosols/Precipitation on the (thermo)dynamics of Scu and Cu
- •Mesoscale structures in Scu and Shallow Cu
- •Transition from shallow to deep convection (deep convective diurnal cycle in tropics)
- •What controls the low cloud fraction

Parameterization

- •Vertical velocity in convective clouds
- •Convection on the 1km~10km scale. (stochastic convection)
- •Microphysicis (precip)
- •Transition regimes.

Climate

Determine and understand the processes that are responsable for the uncertainty in cloud-climate feedback. 02/09/2008 ECMWF-08