# Soil drying in Europe and its impact on atmosperic circulations 

Bart van den Hurk<br>Rein Haarsma<br>Frank Selten<br>Sonia Seneviratne

## How does the land change the hydroclimate?

- It is part of the hydrological cycle
- It may buffer precipitation anomalies


d'Andrea et al (2006): in regions of weak advection positive feedback may lead to 'locking in' on dry or wet regimes


## How does the land change the hydroclimate?

- It is part of the hydrological cycle
- It may buffer precipitation anomalies
- It may change the atmospheric ability to form precipitation


Findell and Eltahir (2003): this feedback can be positive (wet soils favouring convection when MSE build up is required) or negative (dry soils leading to PBL reacing LCL)

## How does the land change the hydroclimate?

- It is part of the hydrological cycle
- It may buffer precipitation anomalies

- It may change the atmospheric ability to form precipitation
- It may change the atmospheric circulation
- e.g. Kanamitsu et al (2003) looked at SW US
- Cook et al (2006) looked at Southern Africa
- Van Ulden et al (2006) speculated about impact of drying on European
 circulation in AR4 GCMs


## A famous plot on landatmosphere interaction

- Areas where changing soil moisture variability affects local daily precipitation variability
 local feedback

No strong feedback in Europe

## How to 'measure' landatmosphere coupling?

- Compare two multi-year simulations:
- One normal ('coupled') simulation

- One ‘uncoupled’ simulation with fixed land cond's

- See what is the effect on variability of $T, P$


## Change in interannual variability for future conditions

- Land-atmosphere interaction influences this variability!
- Northward shift of areas with strong variability


Seneviratne et al, 2006


Uncoupled


Change of circulation and precipitation in summer


Van Ulden and Van Oldenborgh, 2006
ECMWF seminar on subgrid processes - Sep 2008

## Feedback hypothesis

Soil water stress


Relatively high land temperature

## Feedback hypothesis

Soil water stress
$\square$
Relatively high land temperature

Thermal low above land, high above sea


High land-sea
temperature contrast


## Summary so far

- Land-atmosphere interaction has impact on regional hydroclimate
- local feedback and/or change in circulation?
- Over Europe signal within a season is not strong
- local or remote?
- In Europe year-to-year variability is a function of land-atmosphere interaction
- and changes with climate change
- Can we find a circulation response over Europe?



## 2 studies concerning Europe

- Do we see effect of land-atmosphere interaction on summertime blocking?
- Can we explain changes in atmospheric circulation from land drying?
- 2 sets of model runs (1950-2100)
- ESSENCE
- ensemble of ECHAM/OM1
- plus one member with daily climatological soil
- IFS
- ECMWF atmosphere-only model with prescribes SSTs
- plus one simulation with altered regional surface condition


## Analysis of JJA ESSENCE and ECMWF time slice runs



Difference future (Alb 2070-2100) - control (1970-2000)

## A first diagnostic exploration in ESSENCE

- Basic question: is it true that soil-atm interaction has impact on blocking circulation?
- Persistence of blockings
- Frequency of blocked conditions
- Start with summer blockings
- blocked if $\partial \mathrm{Z} / \partial \mathrm{y}_{40-50}>0$ and $\partial \mathrm{Z} / \partial \mathrm{y}_{50-67}<-10 \mathrm{~m} /{ }^{\circ}$

Equator
405067
N -pole

## The ESSENCE experiments

- Baseline experiment (17 members; 5 analysed)
- \# 1-16: only monthly soil fields stored
- fixed daily soil moisture (and snow): stored from \#17
- climatological surface fields: monthly soil moisture/snow from \#1 - 16 averaged and interpolated to daily fields
- CLIM experiment (1 member)
- using climatological surface fields
- ‘GLACE’ experiment (5 members)
- each using fixed soil moisture
- failed $:$ :


## The CLI MSOI L run



## I mpact of prescribing soil moisture



## Variability of pressure levels

std $Z 500 \mathrm{CTL}$ (filter 10 doys)


## The blocking index in JJA



## Persistence of blockings



## Composite of Z500-anomaly



High pressure pattern shows preference for more westward position

cro of-09 dops (n=678) $\quad \Delta \mathrm{W} / \sigma_{\mathrm{W}, \text { daily }}$


CTL
(S) ${ }^{25}$ longer episodes (5-9 days)


## Patterns of Z975-anomaly



## 2 studies concerning Europe

- Do we see effect of land-atmosphere interaction on summertime blocking? Not a lot.
- no change in blocking persistence or frequency
- with interaction: less Z500 variability over land
- high pressure anomaly in blocked conditions a bit more off the continent (shift to the West)
- Can we explain changes in atmospheric circulation from land drying?


## Matching patterns soil m. (J une) - MSLP (Jul-Aug)

- SVD analysis (patterns giving maximum correlation)
- Monthly mean ESSENCE (17 members, 1950-2000)

dry Medit. soil in J une



Subsequent precipitation response in area with largest MSLPgradient

## Future - control ECMWF run

- Low precipitation/high evaporation in spring in S.Europe

- Dry summer soil in S. and C.Europe



## Future - control ECMWF run

- Dry summer soil in S. and C.Europe

- Reduced evaporation and enhanced heating mainly
 in S.Europe (where evap is moisture limited)


## Future - control ECMWF run

- Reduced evaporation and enhanced heating mainly in S.Europe

- S.European heat low

(confirmed with experiment with extra heating in only S.Europe)


## Future - control ECMWF run

- S. European heat low

- More subsidence in C.Europe


JJ A subsidence

## Future - control ECMWF run

- More subsidence in C.Europe

- Less cloud \& precipitation, more heating in

C.Europe

MEDFLUX $\exp$ ( $20 \mathrm{~W} / \mathrm{m} 2$ extra heating)


## What did we learn?

- Blockings do not seem less persistent when land-atm interaction is reduced
- Z500 and surface patterns tend to shift westward

Duration of JJA blocking sequences CTL climate (1950-20




