

Aerosol modeling

Michael Schulz

Laboratoire des Sciences du Climat et de l'Environnement CEA / CNRS / UVSQ - IPSL Gif-sur-Yvette, France

Reading 2nd September 2008

Why should we care about the aerosol?

How to represent the aerosol in a global model?

Current model quality with respect to observations?

LMDzT-INCA Atmosphere part of french IPSL climate model, 3.8%2.8%19 level resolution, nudged to ECMWF winds With INCA chemistry and aerosol module,

ECWMF-GEMS-AER Forecast and Reanalysis, (MODIS AOD assimilated)

AeroCom models

WMO Sand and Dust Storm Warning System

Dust forecast with LMDzT-INCA, nudged to ECMWF winds

Mean aerosol direct radiative effect

Based on multiple model simulations Difference Current/Preindustrial emissions

4th assessment report IPCC 2007 / Schulz et al., ACP, 2006

IPCC 4th assessment report

Foster et al. IPCC 2007 Haywood&Schulz, GRL, 2007

Aerosol Cooling Removed

Brasseur and Roeckner, Geophys. Res. Lett., 2005

Aerosol-Cloud Interaction Processes

Lohmann et al., Atmos. Chem. Phys. Discuss., 2007

Aerosol-cloud interaction Subjective example

Indirect Radiative Effects

Effect	Cloud type	Description	
Indirect aerosol effect for clouds with fixed water amounts (cloud albedo or Twomey effect)	All clouds	The more numerous smaller cloud particles reflect more solar radiation	
Indirect aerosol effect with varying water amounts (cloud lifetime effect)	All clouds	Smaller cloud particles decrease the precipitation efficiency thereby prolonging cloud lifetime	
Semi-direct effect	All clouds	Absorption of solar radiation by soot may cause evaporation of cloud particles	
Thermodynamic effect	Mixed-phase clouds	Smaller cloud droplets delay the onset of freezing	
Glaciation indirect effect	Mixed-phase clouds	More ice nuclei increase the precipitation efficiency	
Riming indirect effect	Mixed-phase clouds	Smaller cloud droplets decrease the riming efficiency	

Lohmann and Feichter, Atmos. Chem. Phys., 2005

First Indirect Effect « Constrained »

LMDz simulation
MODIS satellite observations

Quaas and Boucher, Geophys. Res. Lett., 2005

Significant regional direct radiative effects

Alteration of the temperature profil due to absorbing aerosol

Modification of cloud structure and properties

Climate effect of changes in aerosol emissions

Visibility, regional pollution, health effects

Large uncertainty in model simulation of effects

Ň Representing aerosol in a global model 6E-09 TOTAL DUST Sea Salt **Sulfate** 습 티 3E-09 **Organics** 2E-09 1E-09 0E+00 0.1 10 0.01 100 1 Particle Diameter [um]

Bin versus modal size distribution

Lognormal Distributions as in LMDzT-INCA model

Extinction f(wavelength)

Single scattering albedo f(wavelength)

sulfate black carbon dust sea-salt volcanic

heavy rain light rain ice cloud water cloud pollution

Impact of Chemistry on Fine Particle formation

Ratio gas phase over aqueous phase production of Sulphate in ECHAM-HAM and LMDzT-INCA

July 2000

UNECE Task force model experiments Hemispheric Transport of Air Pollution

Total sulfate column load imported into target region

Sulphur Flux contributions [%]

Example for coupled processes within sulfate budget

Why exhibits the removal of Sulphate and SO2 within region a relatively high scatter?

- => Differences in wet removal parameterization ?
- \Rightarrow Differences in precursor SO2 dry deposition ?
- \Rightarrow Differences in SO2=> SO4 conversion ?

Winter Arctic surface concentrations

Shindell et al. ACP 2008

Meridional Aerosol Distribution

Sulfate Partikulate Organic Matter Black Carbon Seasalt Mineral dust

Experiment A model as is _____ Experiment B harmonized emission

Textor et al. 2006

Precursor emissions (SO2, NOx, VOC) chemical production, condensation Primary aerosol emissions (BC, POM, dust, sea salt)

> Residence times Transport, dispersion, wet and dry deposition

Aerosol Loads

Optical properties Mass extinction/absorption coefficient

Aerosol Optical Depth

Forcing efficiency per unit optical depth Single scattering albedo Hemispheric Backscatter Vertical Distribution of aerosol

Cloud and aerosol position

of processes ??

Interdependence

Direct radiative forcing

Partial sensitivity analysis of impact of different properties on forcing estimate

Forcing (RF) = function (chemical production (CHEP) x lifetime x extinction coefficient (MEC) x forcing efficiency (NRF)

How much would the simulated forcing vary, if it depended on the variations of only one factor?

We need to get it right for multiple problems **Emissions Chemical Reactions** Size **Aerosol dynamics** Composition Hygroscopicity **Optical properties** Aerosol-cloud Interactions (cloud properties, wet removal) Dry removal Transport

Methods to obtain observational records

Chemical analysis of filter substrate, mass spectrometer Size distribution by inversion of optical data Electro+mechanical separation prior to detection Condensation of vapour on particles prior to detection Gravimetry of aerosol mass Wet deposition collection and analysis Light extinction & absorption measurement (sun light or lamp) Satellite imagery and retrieval Lidar detection of aerosol backscatter Ice core chemical analysis

Models and Satellites against MODIS 2000 and Aeronet

Median AeroCom model

AN: ANET 2000 AR: ARQM 9999 AV: AVHRR 9999 GI: GISS 2000 GO: GOCART 2000 KY: KYU 2000 LO: LOA 2000 LS: LSCE 2000 MA: MATCH 2000 MI: MISR 2000 MI9: MISR 9999 M0: MODIS 2000 M1: MODIS 2001 M2: MODIS 2002 M3: MODIS 2003 M09: MODIS 9999 N MM: MODMIS 2000 MZ: MOZGN 2000 MP: MPI HAM 200 PN: PNNL 2000 P1: POLDER 1997 P2: POLDER 2003 TM: TM5 B 2000 TO: TOMS 9999 UC: UIO CTM 2000 UG: UIO_GCM_999 UL: ULAQ 9999 UM: UMI 2000

GREEN : satellite retrievals

Blue/Red/Black : models

AOD fields by assimilation of satellite data

ECMWF forecast 00h

ECMWF Reanalysis

MODIS satellite derived AOD

Annual averages 2003

Acknowledgment Benedetti/Morcrette

	Reanalysis	Forecast	Aeronet
Mean AOD	0.242	0.218	0.215
Correlation	0.86	0.71	
RMS	0.093	0.123	
Std Mod/Obs	0.79	0.75	
Month Bias	32%	39%	

Based on # 1280 monthly means in 2003 from worldwide Aeronet network no mountain sites

Biomass burning aerosols

ECMWF Reanalysis Modis AOD assimilation

ECMWF forecast 00h

Biomass burning aerosols

ECMWF Reanalysis Modis AOD assimilation

ECMWF forecast 00h

ECMWF Reanalysis Modis AOD assimilation

ECMWF forecast 00h

ECMWF Reanalysis ECMWF forecast 00h Modis AOD assimilation

ECMWF Reanalysis EC Modis AOD assimilation

ECMWF forecast 00h

01/04 11/04 21/04 01/05 11/05 21/05 31/05 10/06 20/06 30/06

2003

source: AEROCOM

0.0

Asian pollution plume predominantly fine mode AOD confirmed by sun photometer inversion result

M0D08_D3.005 Aerosol Optical Depth at 550 nm [unitless] (13Juj2003) 38N 0.90 365 0.80: 0.70. 34N 0.60 32N 0.50; 0.40 30N 0.30 28N 0.201 26N 0.10 0.01 74N 129W 1280 123W 120W 1170 1140 111พ 1080 105₩

North American pollution California, July 03 False repartitioning of AOD among species by assimilation

Natural aerosols

DUST:

Erosion due to high winds Well defined transport events Though localized emissions Absorbing and Scattering!

SEASALT: Windy conditions associated with high humidity and cloudy conditions AOD nonlinearly related to RH

Source NASA

Dust aerosols (Sahel and Capo Verde)

Error against different obs datasets normalized by mean error of AeroCom models

OD All Sites ANG All Sites Surf Conc Tot Depo OD Dust Sites AND Dust Sites OD Africa Sites ANG Africa Sites OD Middle East

Year 2000 Climatological mean Two datasets to compare for each model

Acknowledgment Nicolas Huneeus / Jan Griesfeller LSCE

Sea Salt aerosols (autumn OND, Central Pacific)

ECMWF Reanalysis Modis AOD assimilation

ECMWF forecast 00h

Overview of long term records **90N Supersites** Ice Core Analysis Aerosol co Wet Deposition Networks me 1860 1960 1980 1990 1st generation Satellites **Campaigns 90S**

Summary Evaluation of aerosol models

Assimilation provides a significantly improved AOD

Different aerosol properties are matched with Varying quality by different models

Future challenge: Integrate in-situ & remote sensing observations Link and exploit past campaigns & networks & A-train Prepare hindcast simulations of the aerosol Establish trends and regional/global climatologies

Acknowledgment

Thanks to contributions from Stefan Kinne, Christiane Textor, Nicolas Huneeus, Johannes Quaas Jan Griesfeller, Angela Benedetti, Jean-Jaques Morcrette, AeroCom modellers,

MODELS MODELERS: ARQM-GCM/CAM ARQM Meteorological Service Canda, Toronto, Canada: S. Gong, P. Huang CAM NCAR, Boulder, USA, N. Mahowald DLR-ECHAM-MADE Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany: J. Hendricks, A. Lauer GISS Columbia University, GISS, New York, USA: D. Koch, S. Bauer GOCART Goddard Space Flight Center, Greenbelt; Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, USA: T. Diehl, M.Chin KYU-SPRINTARS Kyushu University, Fukuoka, Japan: T. Takemura LSCE-LMDzT-INCA Laboratoire des Science du Climat et de l'Enivonnement, Gif-sur-Yvette, France: M. Schulz, Y.Balkanski, C. Textor, S. Generoso, S. Guibert, D. Hauglustaine LOA-LMDzT Laboratoire d'Optique Atmosphérique, Université des Sciences et Technologies de Lille, CNRS, Villeneuve d'Ascq, France: O. Boucher, S. Reddy MATCH, NCAR, Boulder, Colorado, UŠA: D. Fillmore, P. Rasch, B. Collins MPI_HAM-ECHAM5-HAM, Max-Planck-Institut für Meteorologie, Hamburg, Germany: P. Stier, J. Feichter, E. Vignati, J. Wilson, S. Kloster, M. Schulz MOZGN NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA: L. Horrowitz, P. Ginoux, X. Tie, J.F. Lamarque PNNL-MIRAGE Battelle, Pacific Northwest National Laboratory, Richland, USA: S. Ghan, R. Easter TM5 Institute for Marine and Atmospheric Research Utrecht (IMAU) Utrecht University, The Netherlands: M. Krol, EC, Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, Italy: F.Dentener UIO_CTM2, University of Oslo, Department of Geophysics, Oslo, Norway: G. Myhre T. Berntsen, T. Berglen, A. Grini, UIO_GCM-CCM-Oslo, University of Oslo, Department of Geophysics, Oslo, Norway: T. Iversen, Ø. Seland, J.E.Kristjansson, A. Kirkevåg, ULAQ-CCM, Universita degli Studi L'Aguila, Italy: G. Pitari, V. Montanaro, E. Mancini UMI-IMPACT/DAO, University of Michigan, Ann Arbor, MI, USA: J. Penner, X. Liu

