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NERSC Mission 

NERSC was established in 1974.  Its mission 
is to accelerate the pace of scientific discovery 
by providing high performance computing, 
information, data, and communications 
services for all DOE Office of Science (SC) 
research. 
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NERSC is the Production Facility 

for DOE Office of Science 

•NERSC serves a large population of users 

~3000 users, ~400 projects, ~500 codes 

•Allocations by DOE 
– 10% INCITE awards: 

• Created at NERSC 

• Open to all of science, not just DOE 

• Large allocations, extra service 

– 70% Production (ERCAP) awards: 

• From 10K hour (startup) to 5M hour 

– 10% each NERSC and DOE reserve 

•Award mixture offers 
–High impact through large awards 

–Broad impact across domains 
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NERSC Serves Broad and 

Varying DOE Science Priorities 
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HPSS Archival Storage 

• 74 PB capacity 

• 11 Sun robots  

• 130 TB disk cache 

NERSC 2008 Configuration 
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Large-Scale Computing System 

Franklin (NERSC-5): Cray XT4  

Upgraded from Dual to Quad Core 

• 9,740 nodes; 38,760 cores  

• 9,660 computational nodes (38,640 cores) 

• 79 TBs Aggregate Memory (8 GB per node) 

• ~38 Tflops/s sustained SSP (355 Tflops/s peak) 

Clusters 

Bassi (NCSb) 

• IBM Power5 (888 cores) 

Jacquard (NCSa) 

• LNXI Opteron (712 cores) 

PDSF (HEP/NP) 

• Linux cluster (~1K cores) 

NERSC Global  

 Filesystem (NGF) 

• 230 TB; 5.5 GB/s 

• IBM’s GPFS 

Analytics &
 Visualization 
• Davinci (SGI

 Altix) 



Nuclear Physics 
• Calculation: High accuracy ab initio calculations on O16 using no

-core shell model and no-core full configuration interaction model 

• PI: James Vary, Iowa State 

• Science Results:  

– Most accurate calculations to
 date on this size nuclei 

– Can be used to parametrize new
 density functionals for nuclear
 structure simulations 

• Scaling Results: 

– 4M hours used in 2007 

– 12K cores; vs 2-4K before
 Franklin uncharged time 

– Diagonalize matrices of
 dimension up to 1 billion 
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Validating Climate Models 

• INCITE Award for “20th Century Reanalysis” using an Ensemble 
Kalman filter to fill in missing climate data since 1892  

• PI: G. Compo, U. Boulder 
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Sea level pressures with color showing uncertainty (a&b);
 precipitation (c); temperature (d). Dots indicate
 measurements locations (a). 

• Science Results:  

– Reproduced 1922
 Knickerbocker storm  

– Data can be used to
 validate climate and
 weather models 

• Scaling Results: 

– 3.1M CPU Hours in
 allocation 

– Scales to 2.4K cores 

– Switched to higher
 resolution algorithm
 with Franklin access 



Low-Swirl Burner Simulation  

• Numerical simulation of a lean premixed hydrogen flame in a 
laboratory-scale low-swirl burner (LMC code) 

• Low Mach number formulation with adaptive mesh refinement (AMR) 

• Detailed chemistry and transport 

• PI: John Bell, LBNL  

Science Result: 
• Simulations capture cellular structure of lean

 hydrogen flames and provide a quantitative
 characterization of enhanced local burning
 structure

NERSC Results:
• LMC dramatically reduces time and memory.
• Scales to 4K cores, typically run at 2K
• Used 2.2M hours on Franklin in 2007, allocated

 3.4M hours in 2008 
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J B Bell, R K Cheng, M S Day, V E Beckner and M J Lijewski, Journal
 of Physics: Conference Series 125 (2008) 012027



Nanoscience Calculations and 

Scalable Algorithms 

• Calculation: Linear Scaling 3D Fragment (LS3DF). Density Functional
 Theory (DFT) calculation numerically equivalent to more common
 algorithm, but scales with O(n) in number of atoms rather than O(n3) 

• PI: L.W. Wang, LBNL
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• Science Results
• Calculated dipole moment on 2633

 atom CdSe quantum rod,
 Cd961Se724H948 . 

• Scaling Results
• Ran on 2560 cores
• Took 30 hours vs many months for

 O(n3) algorithm
• Good parallel efficiency (80% on 1024

 relative to 64 procs)



• Calculations: AstroGK gyrokinetic code for astrophysical

 plasmas 

• PIs: Dorland (U. of Maryland), Howes, Tatsuno 

Astrophysics Simulation of Plasmas 

• Science Results 

• Shows how magnetic

 turbulence leads to particle

 heating 

• Scaling Results 

• Runs on 16K cores 

• Combines implicit and

 explicit methods 
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Modeling Dynamically and Spatially

 Complex Materials for Geoscience 

• Calculation: Simulation of seismic waves through
 silicates, which make up 80% of the Earth’s mantle 

• PI: John Wilkins, Ohio State University 
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• Scaling Result 
First use of
 Quantum Monte
 Carlo (QMC) for
 computing elastic
 constants 

8K core parallel
 jobs in 2007 

• Science Result 
– Seismic analysis shows jumps in wave velocity due to

 structural changes in silicates under pressure 



Science Over the Years 

NERSC is enabling new science in all disciplines, with
 over 1,500 refereed publications in 2007
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NERSC Vision 



NERSC Computing 



DOE Demand for Computing is 

Growing  

Compute Hours Requested vs Allocated

• Each year DOE users
 requests 2x more hours
 than allocated

• This 2x is artificially
 constrained by
 perceived availability

• Unfulfilled allocation =
 hundreds of millions of
 hours in 2008

• When allocation limits
 are removed, scaling
 and science increase

15
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2005: Clock speed will double 

every 2 years 
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2007: Cores/chip will double 

every 2 years 
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DRAM component density is

 only doubling every 3 years 

Source: IBM
1 Mayl 2008 18Sequoia Programming Models



New Moore’s Law In Situ:  

Quad Core Upgrade Phases 

19 

• Complete on Oct. 29! 

• Then acceptance testing starts. 
• SIO module move (one day) 

• Swap compute modules cols 1&2 -> cols 15&16   
• SIO modules are not upgraded to QC. 

• Only compute modules in cols 0&1 remain. 
• Sept 17 - Oct 6 

• 20,392 cores production (105%); 16,128 cores test 
• 2.1 testing 

• Sept 10 - Sept 17 

• Quad Core is now default; charging against user accounts; 
• 28,456 cores in production 147%  

• Verify split torus not affecting I/O; 

• 2.1 configuration; Aug 21 - Sept 9 
• 17,016 cores production -88%; 11,424 cores test  

• Verify mixed-mode operation at scale; improve screening 

• ~1 week, Aug 13 – Aug 20 
• 22,776 cores production ~117%  

• July 15 - Aug 12 (29 days); ~76% of original cores in production 

• Verify mixed-mode operation, switch partition 
• Upgrade 3 columns, improve screening. 

• 19,320 cores in production 

Plan developed by Bill Kramer and Nick Cardo in

 collaboration with Cray (Dan Unger and others).   



NERSC Approximate Computational  

System Profile 



NERSC Power Efficiency 



Understanding Power

 Consumption in HPC Systems 

• Until about 2 - 3 years ago there has been a

 lack of interest in power issues in HPC 

• Power is the barrier to reaching Exascale:

 projected between 20 and 200 MW 

• Lack data and methodology to address

 power issues in computer architecture 

• Project at LBNL (NERSC and CRD) to

 development measurement standards and

 better quantitative understanding 



Full System Test 

• Tests run across all 19,353 compute cores 

• Throughput: NERSC “realistic” workload composed of full applications 

• idle() loop allows powersave on unused processors; (generally more efficient) 

STREAM HPL Throughput 

No idle() 

Idle() loop 



Single Rack Tests 

• Administrative utility gives rack DC amps & voltage 

• HPL & Paratec are highest power usage 

Single Cabinet Power Usage
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Power Conclusions 

• Power utilization under an HPL/Linpack load is a good
 estimator for power usage under mixed workloads for single
 nodes, cabinets / clusters, and large scale systems 
– Idle power is not 

– Nameplate and CPU power are not 

• LINPACK running on one node or rack consumes approximately
 same power as the node would consume if it were part of full-sys
 parallel LINPACK job 

• We can estimate overall power usage using a subset of the
 entire HPC system and extrapolating to total number of
 nodes using a variety of power measurement techniques 
– And the estimates mostly agree with one-another! 
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Parallelism is “Green” 
  “Years of research in low-power embedded computing 

have shown only one design technique to reduce power: 
reduce waste.”  

 Mark Horowitz, Stanford University & Rambus Inc. 

• Highly concurrent systems are more power efficient  
– Dynamic power is proportional to V2fC 

– Increasing frequency (f) also increases supply voltage (V)   more 
than linear effect of clock speed scaling 

– Increasing cores increases capacitance (C) but has only linearly 

• High performance serial processors waste power 
– Speculation, dynamic dependence checking, etc. burn power 

– Implicit parallelism discovery 

• Challenge: Can you double the concurrency in your 
algorithms and software every 2 years?  



Design for Power: More

 Concurrency 

• Power5 (Server) 
– 389 mm2 

– 120 W @ 1900 MHz 

• Intel Core2 sc (Laptop) 
– 130 mm2 

– 15 W @ 1000 MHz 

• PowerPC450 (BlueGene/P) 
– 8 mm2 

– 3 W @ 850 MHz 

• Tensilica DP (cell phones) 
– 0.8 mm2 

– 0.09 W @ 650 MHz 

Intel Core2

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you 
can pack 100x more cores onto a chip and consume 1/20 the power!

PPC450
TensilicaDP



Specialization Saves Power 

Performance on EEMBC benchmarks aggregate for Consumer, Telecom, Office, Network, based on ARM1136J-S (Freescale i.MX31), ARM1026EJ-
S, Tensilica Diamond 570T,  T1050 and T1030, MIPS 20K, NECVR5000).  MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM 968E-S, ARM 
966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family.  All power figures from vendor websites, 
2/23/2006.

Graph courtesy of Chris Rowen, Tensilica Inc.
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1km-Scale Global Climate Model Requirements 

1km-Scale required to resolve

 clouds 

• Simulate climate 1000x faster than real time  

• 10 Petaflops sustained per simulation  

(~200 Pflops peak) 

• 10-100 simulations (~20 Exaflops peak) 

• DOE E3SGS report suggests exaflop

 requires 180MW 

Computational Requirements: 

• Advanced dynamics algorithms: icosahedral,

 cubed sphere, reduced mesh, etc. 

• ~20 billion cells  100 Terabytes of Memory 

• Decomposed into ~20 million total

 subdomains  massive parallelism 

200km
(now)

1km



Strawman 1km Climate Computer 
(Shalf, Oliker, Wehner) 

– Computation 
• .015oX.02oX100L (note 4X more vertical levels than CCSM3) 

– Hardware: 
• ~10 Petaflops sustained (300 Pflops peak?); ~100 Terabytes total memory 
• ~20 million processors using true commodity (embedded cores) 

– Massively parallel algorithms with autotuning 
• E.g., scalable data structure, e.g., Icosahedral with 2D partitioning 

• ~20,000 nearest neighbor communication pairs per subdomain per simulated
 hour of ~10KB each 

General Purpose Special Purpose Single Purpose

Cray XT3 D.E. Shaw MD Grape BlueGene Design for 

Climate 

Application Driven

– Upside result: 
• 1K scale model running in O(5 years)! 10-100x less energy. 

– Worse case: 
• Better understand how to build systems & algorithms for climate 



NERSC Data 



Data is Increasing Faster than 

Moore’s Law 

ESnet traffic historically
 increasing at 80% CAGR

NERSC Archive increasing
 at 70% GAGR



NERSC’s Global File System (NGF) 

The First of Its Kind 

• A facility-wide file system 
– Scientists more productive; efficient use of unique computational resources 

– Integration with archival storage (more desired) and grid desired 

• High performance 
– Scales with clients and storage devices 

– Absolute performance close to that of local parallel file systems 

NGF
SAN

NGF
-FRANKLIN

SAN

NGF Disk

Franklin Disk

NGF Nodes

Login

DVS

Compute
Node
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Network

BASSI
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Planck
pNSD
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Franklin

Jacq
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• New Paradigm for Analytics: “Google for Science” 

• MapReduce: A simple programming model that applies to many
 large-scale analytics problems 

• Hide messy details in MapReduce runtime library: 

– Parallelization, load balancing, machine failures, … 

• Steps in MapReduce: 

– Read a lot of data 

– Map: extract interesting items 

– Shuffle and Sort 

– Reduce: aggregate, transform,… 

– Write the results 

• Used at Google for >10K applications 

– Grep, clustering, machine learning, … 

List of roads, intersections,… 

Find those in given lat/long range 

Render map tiles 

NERSC Data Elements: Tools 



Multicore Technology Summary 

• Multicore sustains Moore’s Law growth 
– Memory wall issues continue to rise 

– Data storage needs will continue to rise 

• Multicore helps power issues 

– On-chip power density; total system power 

• Architectural chaos:  

– What is a “core”? 

• 1 thread per core, many threads per core (Niagra,

 XMT), many “cores” per thread (vectors, SIMD, …) 

• Software challenges are key 



Strategies for Multicore (and 

Manycore) in Exascale 

• There are multiple approaches we could 

take in the HPC community 

• They have different cost to us: 

– Software infrastructure investment 

– Application software investment 

• And different risks of working 

– At all 

– Or at the performance level we demand 



1) MPI Everywhere 

• We can run 1 MPI process per core 

– This works now (for CMPs) and will work for a while 

• How long will it continue working?  

– 4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 

– Depends on performance expectations -- more on this later 

• What is the problem? 

– Latency: some copying required by semantics 

– Memory utilization: partitioning data for separate address space requires 
some replication 

• How big is your per core subgrid?  At 10x10x10, over 1/2 of the points are 
surface points, probably replicated 

– Memory bandwidth: extra state means extra bandwidth 

– Weak scaling will not save us -- not enough memory per core 

– Heterogeneity: MPI per CUDA thread-block? 

• Advantage: no new apps work; modest infrastructure work (multicore-
optimized MPI) 



2) Mixed MPI and OpenMP 

• This is the obvious next step 

• Problems 
– Will OpenMP performance scale with the number of cores / 

chip? 

– OpenMP does not support locality optimizations 

– More investment in infrastructure than MPI, but can 
leverage existing technology 

– Heterogeneity support unclear 

– Do people want two programming models? 

• Advantages 
– Incremental work for applications 

• Variation: await a silver bullet from industry 
– Will this be at all helpful in scientific applications? 

– Do they know enough about parallelism/algorithms 



3) PGAS Languages 

• Global address space: thread may directly read/write remote data 
• Partitioned: data is local or global: critical for scaling
– Maps directly to shared memory hardware
– Maps to one-sided communication on distributed memory hardware
– One programming model for inter and intra node parallelism! 
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• UPC, CAF, Titanium: Static parallelism (1 thread per proc) 
– Does not virtualize processors; main difference from HPCS languages 

which have many/dynamic threads



Sharing and Communication

 Models: PGAS vs. Threads 

• “Shared memory” OpenMP, Threads,… 
– No control over locality 

Caching (automatic management of memory
 hierarchy) is critical 

Cache coherent needed (hw or sw) 

• PGAS / One-sided Communication 
– Control over locality, explicit movement 

Caching is not required; programmer makes local
 copies and manages their consistency 

Need to read/write without bothering remote
 application (progress thread, DMA) 

No cache coherent needed, except between the
 network interface and procs in a node 



Sharing and Communication

 Models: PGAS vs. MPI 

• A one-sided put/get message can be handled directly by a network
 interface with RDMA support 
– Avoid interrupting the CPU or storing data from CPU (preposts) 

• A two-sided messages needs to be matched with a receive to identify
 memory address to put data 
– Offloaded to Network Interface in networks like Quadrics 

– Need to download match tables to interface (from host) 

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea



Performance Advantage of  

One-Sided Communication 

8-byte Roundtrip Latency
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NAS FT Variants Performance 

Summary 

• Slab is always best for MPI; small message cost too high 

• Pencil is always best for UPC; more overlap 
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3D FFT on BG/P 
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Autotuning for Multicore: Extreme

 Performance Programming 

• Automatic performance tuning 
– Use machine time in place of human time for tuning 
– Search over possible implementations 
– Use performance models to restrict search space  

• Programmers should write programs to generate code, not
 the code itself 

• Autotuning finds a good performance solution be heuristics
 or exhaustive search 
– Perl script generates many versions 

– Generate SIMD-optimized kernels 

– Autotuner analyzes/runs kernels 

– Uses search and heuristics 

• Can do this in libraries (Atlas, FFTW, OSKI) or compilers
 (ongoing research) 

Block size (n0 x
 m0) for dense
 matrix-matrix
 multiply



Naïve Serial Implementation 

• Vanilla C implementation 

• Matrix stored in CSR

 (compressed sparse row) 

• Explored compiler

 options, but only the best

 is presented here 

• x86 core delivers > 10x

 the performance of a

 Niagara2 thread 

• Work by Sam Williams

 with Vuduc, Oliker, Shalf,

 Demmel, Yelick 

IBM Cell Blade (PPE)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown



Autotuned Performance 
(+Cell/SPE version) 

• Wrote a double precision
 Cell/SPE version 

• DMA, local store blocked,
 NUMA aware, etc… 

• Only 2x1 and larger BCOO 

• Only the SpMV-proper
 routine changed  

• About 12x faster (median)
 than using the PPEs alone.  

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron), 
+FW fix, array padding(N2), etc…
+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve



MPI vs. Threads 

• On x86 machines,
 autotuned shared
 memory MPICH
 implementation rarely
 scales beyond 2
 threads 

• Still debugging MPI
 issues on Niagara2,
 but so far, it rarely
 scales beyond 8
 threads. 

Autotuned pthreads

Autotuned MPI

Naïve Serial

Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown



Lessons Learned 

• Given that almost all future scaling will be increasing
 cores (within or between chips), parallel programs
 must be more efficient than ever 

• PGAS languages offer a potential solution for both 
– One-sided communication is faster than 2-sided 

– FFT example shows application level benefit 

– Allow sharing of data structures for poor memory scaling 

– Allow locality control for multisocket and multinode systems 

• Autotuning promising for specific optimizations 
– Kernels within a single multicore (multisocket) node 

– Parallel libraries like collectives 



Questions? 


