Application and verification of ECMWF products in Norway 2008

The Norwegian Meteorological Institute

1. Summary of major highlights

The ECMWF products are widely used by forecasters to make forecasts for the public, as boundary values in HIRLAM, as basis for LAM ensembles, as input to statistical methods, and more or less directly by customers. The forecasts are mainly verified directly against observations and less against estimated areal observations. Results are presented in quarterly reports and on internal web pages.

2. Use and application of products

2.1 Post-processing of model output

2.1.1 Statistical adaptation

A Kalman filter procedure is operationally applied to 2 metre temperature forecasts. There is ongoing research in calibration of ensemble prediction systems - in particular precipitation, see references.

2.1.2 Physical adaptation

The ECMWF model with 91 levels and horizontal resolution of 0.5 degree is used to provide lateral boundary values for limited area modelling. HIRLAM with 8 and 12 km resolution is run at 00, 06, 12 and 18 UTC. The 8 km model provides lateral boundary values to HIRLAM with 4 km resolution and UM with 4 km resolution, both run at 00 and 12 UTC.

ECMWF is running a dedicated version of EPS for Norway. TEPS started running daily at ECMWF in mid February 2005. TEPS runs with the same set up and resolution as operational EPS at ECMWF, and hence it has been upgraded accordingly. TEPS differs from EPS in the following way; we have a local target area for the singular vectors. The target area is covering Northern Europe and adjacent sea areas. The forecast time is 72 hours, and we only run 20 + 1 ensemble members. Then TEPS is used for perturbing our LAMEPS system, both the initial conditions and the lateral boundaries are perturbed with TEPS. The LAMEPS system then has 20 + 1 members., and is run daily at 06 and 18 UTC for 60 hours. The current resolution for LAMEPS is 12 km and 60 levels in the vertical. Our end product is a combination ensemble called NORLAMEPS. NORLAMEPS is a simple combination of TEPS and LAMEPS, thus giving us an ensemble with 41 + 1 members. In this way NORLAMEPS is designed to partly account for forecast error caused by model imperfections.

2.1.3 Derived fields

Probability maps for selected weather parameters based on EPS are presented in the meteorological visualisation system, Diana.

2.2 Use of products

ECMWF products are indispensable in operational duties. Deterministic forecasts are presented as horizontal maps and vertical cross sections in Diana and as meteograms.

Seasonal temperature forecasts are presented on the external web for an area covering the Nordic countries, Iceland and Great Britain.

3. Verification of products

3.1 Objective verification

3.1.1 Direct ECMWF model output

Local weather parameters are continuously verified against a large number of observations. An example for 2 metre temperature is given in figure 1 with quarterly mean errors (ME) and standard deviations of errors (SDE) at all Norwegian synoptic stations for the autumn 2007. The results show large geographical variations, but in general the ME can mostly be explained by the differences in elevations.

Figure 2 demonstrates the quality of the precipitation forecasts at synoptic stations for the autumn 2007. In general, very large amounts are underestimated and small amounts seem to occur too often, at least when compared to rain gauge measurements. The precipitation is overestimated at coastal stations and just east of the mountains in the south of Norway where the climate is dry compared to the western part.

Verification of ensemble prediction systems are now quarterly carried out, but results are not yet available as reports.

3.1.2 ECMWF model output compared to other NWP models

An example of 10 metre wind speed forecasts from ECMWF compared to HIRLAM20/12, HIRLAM10/8, HIRLAM4 and UM4 is given in figures 3 and 4, with times series of monthly ME and SDE from March 2006 to May 2008. The results are averaged over different selections of stations. The current version of the ECMWF model has stronger 10 metre wind over Norway, reflected in increased ME from September 2006, when averaged over Norwegian stations. The overestimation leads to good results at wind exposed stations, but still the wind is underestimated in mountainous regions. Along the coastline the wind speed forecasts are now unbiased. Figure 4 show that all models have similar quality of the 10 metre wind speed with respect to SDE.

Precipitation forecasts are verified by several measures in addition to ME, SDE and MAE. Figure 5 shows hit rate, false alarm rate, false alarm ratio, equitable threat score and Hanssen-Kuipers skill score as a function of exceedance threshold for the autumn 2007 for ECMWF, HIRLAM20, HIRLAM10 and UM4. For this season, dominated by frontal precipitation systems, ECMWF and UM4 had in general better scores than HIRLAM20/10.

3.1.3 Post-processed products

The quality of Kalman filter corrected 2 metre temperature forecasts (T2mK) has been compared to direct model output (T2m) and forecasts adjusted to station height (T2mH). The adjustment is simply to increase the temperature by 0.6 degree per 100 meter in the difference between model and real orography. Figure 6 give MAE of T2m, T2mH and T2mK as a function of forecast lead time for HIRLAM10, HIRLAM20 and ECMWF. The results are averaged over 76 Norwegian synop stations and one year of data, January to December 2007. The Kalman filter procedure gives the best result with respect to MAE, but also the simple 'height correction' procedure improves the quality of 2 metre temperature forecasts significantly.

3.1.4 End products delivered to users

3.2 Subjective verification

3.2.1 Subjective scores

The duty forecasters carry out subjective verification of some of the available numerical products. A few scores are daily calculated by looking at the position and strength of the most significant low or high in the forecast area and the position of the fronts associated with these systems. The studies conclude that the model of ECMWF still is the best.

3.2.2 Synoptic studies

4. References to relevant publications

Andersen, J.M.: Prognoseverifikasjon for året 2007. Internal web document (in Norwegian).

Bremnes, J.B., and **Homleid, M.**: Validation of operational numerical weather prediction models December 2006 to February 2007. met.no note 2/2007

Bremnes, J.B., and **Homleid**, **M.**: Validation of operational numerical weather prediction models March to May 2007. met.no note 4/2007.

Bremnes, J.B., and **Homleid, M**.: Validation of operational numerical weather prediction models June to August 2007. met.no note 5/2007.

Bremnes, J.B., and **Homleid, M**.: Verification of operational numerical weather prediction models September to November 2007. met.no note 8/2007.

Bremnes, J.B.: Improved calibration of precipitation forecasts using ensemble techniques. Part 2: Statistical calibration methods. met.no report 4/2007.

Bremnes, J.B.: Improved calibration of precipitation forecasts using ensemble techniques. Part 3: Statistical calibration of multiple ensembles. met.no note 3/2008.

Most publications are available for download at the met.no web page (currently at http://met.no/Forskning/Publikasjoner/, but subject to change).

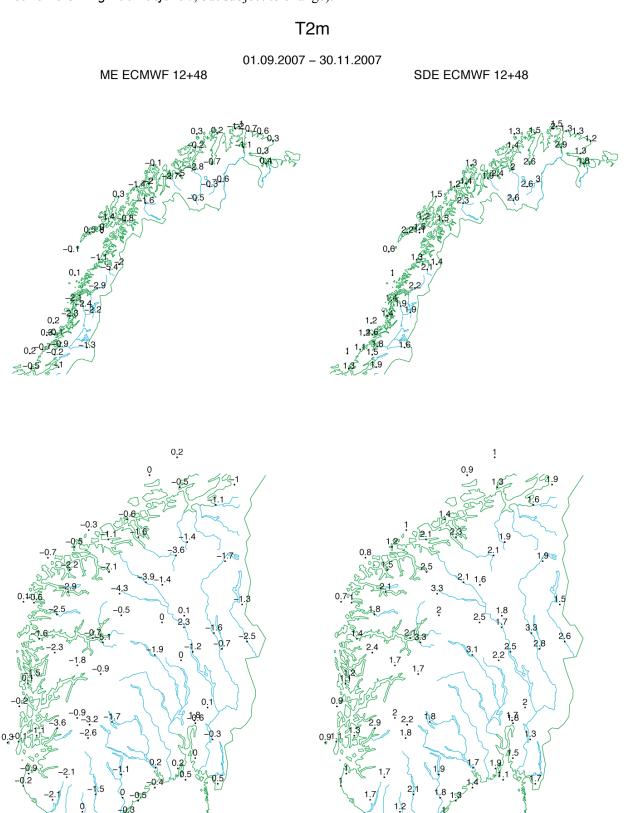


Fig. 1 Mean error (left) and standard deviation of error (right) of ECMWF 12+48 temperature (2m) forecasts for the autumn 2007.

01.09.2007 – 30.11.2007 ME ECMWF 12+42 SDE ECMWF 12+42

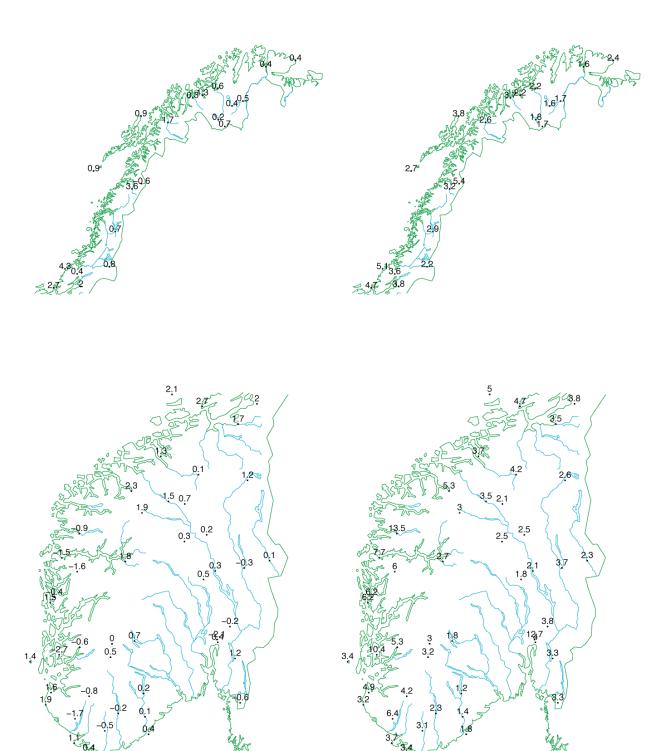


Fig. 2 Mean error (left) and standard deviation of error (right) of ECMWF 12+42 24h accumulated precipitation forecasts for the autumn 2007.

Mean Error of wind speed

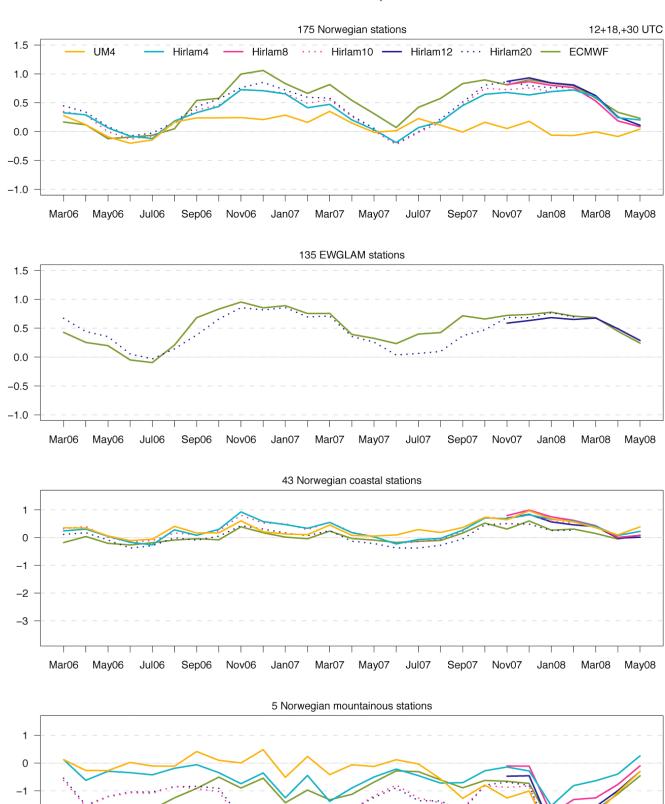


Fig. 3 Monthly mean errors from March 2006 to May 2008 of ECMWF, HIRLAM10 and HIRLAM20 12+18,+24,+36,+48 wind speed forecasts.

Mar07

May07

Jul07

Sep07

Nov07

Jan08

Mar08

May08

-2

-3

Mar06

May06

Jul06

Sep06

Nov06

Jan07

Standard Deviation of Error of wind speed

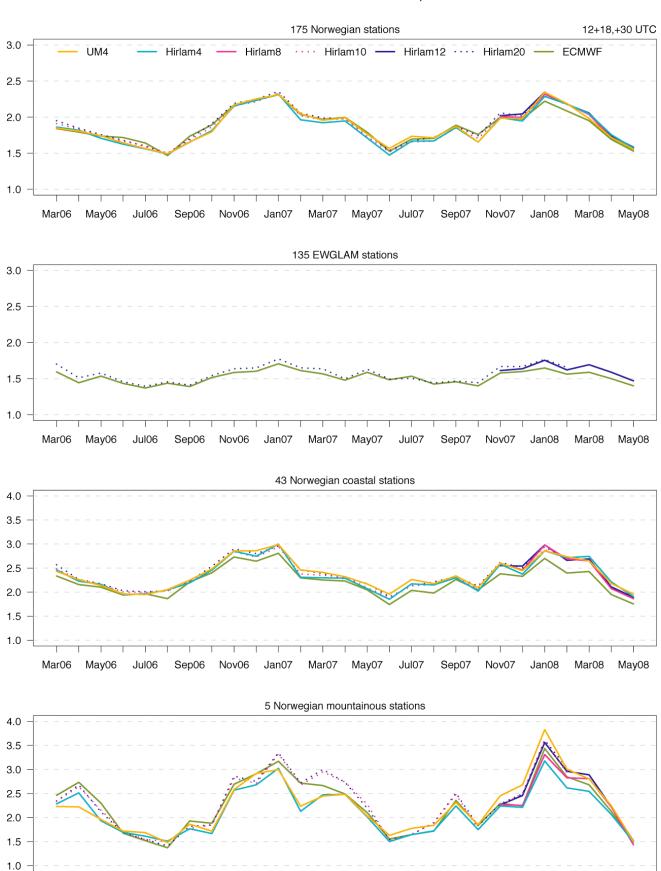


Fig. 4 Monthly standard deviation of errors from March 2006 to May 2008 of ECMWF, HIRLAM10 and HIRLAM20 12+18,+24,+36,+48 wind speed forecasts.

Mar07

May07

Jul07

Sep07

Nov07

Jan08

Mar08 May08

Mar06

May06

Jul06

Sep06

Nov06

Jan07

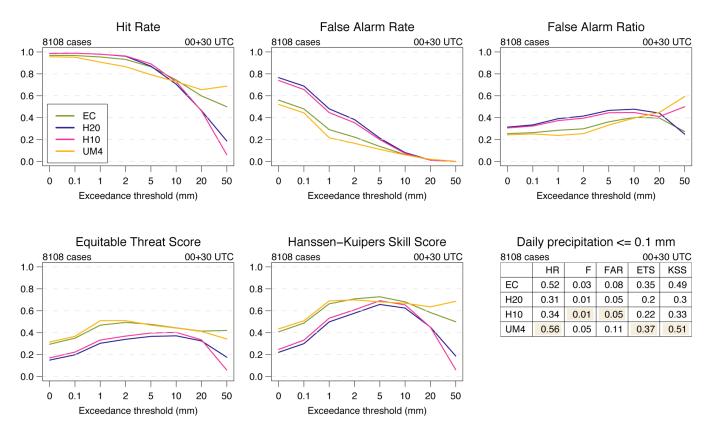


Fig. 5 Hit Rate, false alarm rate, false alarm ratio, equitable threat score and Hanssen-Kuipers skill score for ECMWF, HIRLAM10 and HIRLAM20 00+30 24h accumulated precipitation forecasts for the autumn 2007.

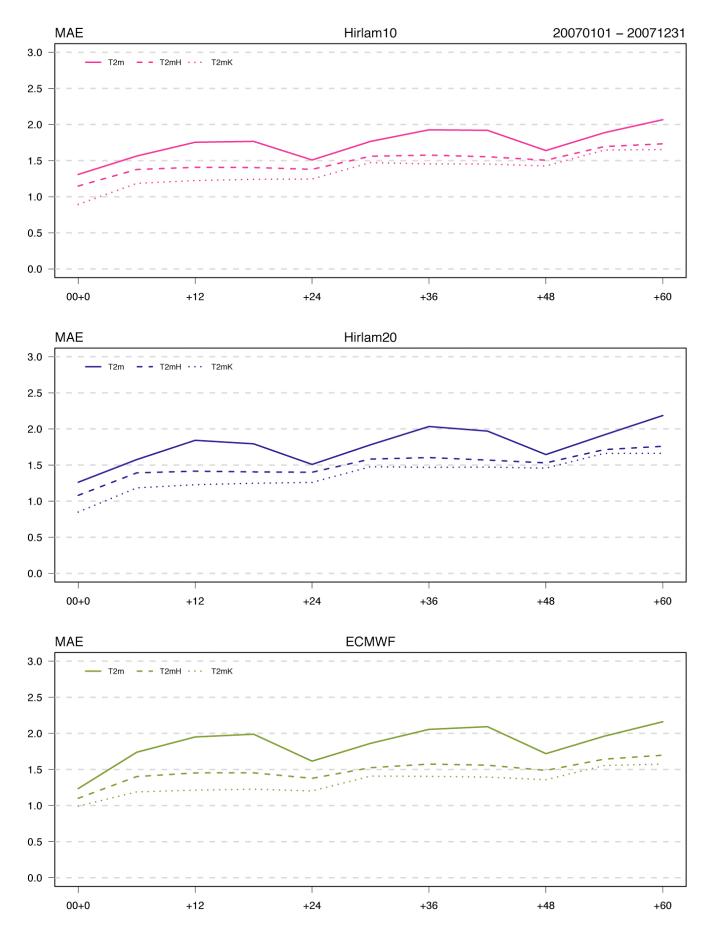


Fig. 6 MAE as a function of forecast lead time for 2 metre temperature HIRLAM10 (upper), HIRLAM20 (middle) and ECMWF (bottom) forecasts; direct model output (T2m), 'height corrected' (T2mH) and Kalman filter corrected (T2mK). The results are based on data from January to December 2007 and averaged over 76 Norwegian synop stations.