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One way of encapsulating the science of climate change as it is relevant to society is in the form of three 
questions: (1) Is the atmosphere warming? (2) Are humans responsible for any part of this warming? and (3) 
Can we predict future climate? The first two questions have been settled in large part by the third and fourth 
scientific assessments of the Intergovernmental Panel on Climate Change (IPCC), albeit the first more 
solidly than the second. The Fourth IPCC Scientific Assessment shows (IPCC AR4), however, that we are 
little better at predicting climate change, even when radiative forcing of the climate system is prescribed. 
Indeed, it has been argued that the IPCC AR4 underestimated the uncertainty in predicting the climate with 
global climate models. When a model’s parameters are varied with physically reasonable uncertainties, the 
spread in climate sensitivity produced by the perturbed physics ensemble is noticeably larger than that 
produced by the models contributing to the IPCC AR4.  

For the practical benefit of society, then, it is mandatory that the climate research community produce a tool 
that can predict climate with satisfactory accuracy and useful precision. Conventionally, the path to 
improving climate models’ predictive capability has been the improvement by way of increased 
sophistication of climate models’ physical parameterization. Models, because of their poor spatial resolution 
dictated by computing limitations, are required to approximate important small scale physical processes 
empirically in order to produce a realistic climate system. Those processes are complex, and hence it is 
argued that their parameterizations should be complex. In fact, though, the increasing sophistication in 
parameterizations leads to increased uncertainty in climate prediction. Another argument is made that climate 
models will be improved by Moore’s Law, that the 18-monthly doubling of computing power will eventually 
lead us to a land of resolved physical processes and the extinction of parameterizations. Uncertainty as we 
know it will no longer exist. Even if this were to happen, though, the empirical nature of the scientific 
method has been lost: what observational evidence can we have that any theory of climate, in the form of a 
model, is any more valid than another? The climate research community is accruing vast amounts of satellite 
data on the climate system, but how can any of this data be used to lend credence to any multi-decadal 
prediction of a climate model?  

Richard Goody gave us some ideas on how this might be done (“Testing Climate Models: An Approach”, in 
Bulletin of the American Meteorological Society, 1998). One can apply the statistical mechanical fluctuation 
dissipation theorem to the climate:  
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where u is the state of the climate system, U(τ) is the statistical time-lagged covariance of the state vector, 
and δf is an externally imposed perturbation to the climate system (Leith, Journal of Climate, 1975). A 
burgeoning literature has attempted to exploit this relationship between second-moments of the climate 
system—the term on the right—to the sensitivity of the climate system, but with meager results. In my 
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opinion, the problem has been that the covariance matrix U(τ) is a very large matrix and no one knows how 
to simplify it, let alone take its inverse at zero lag, so that it still retains the necessary information for 
predicting long-term change. Instead, one can infer from this equation a significant lesson, despite its 
practical shortcomings. The only sound quantitative relationship relevant to testing climate models to lend 
confidence to their predictive power is between lagged covariance of the climate system and trends in the 
climate system. There is no indication that reproduction of the mean state of the climate system by a climate 
model should be a cause for confidence in that climate model’s predictions of future trends. Little has come 
of efforts at relating climate sensitivity and lagged covariance of the climate system, so we take the approach 
of testing climate models by comparing their trends to observed trends of the climate system.  

Before a long time series of data is ever obtained, it is well worthwhile to estimate what trends in the climate 
system are likely to be found with a given data type. Any time series will contain a trend, but of greatest 
interest are trends in the climate system that underlie the naturally occurring inter-annual variability of the 
climate system. The first significant detection of an underlying climate trend will be in a sub-space of a data 
type that is associated with a large signal amplitude and low natural variability. As time progresses, more 
component sub-spaces will yield significant trends, and those sub-spaces that already yielded detectable 
trends will do so with increasing confidence. This is the motivation for a simulated optimal detection study. 
We estimate an emerging signal as  and the fluctuations of natural variability we call tΔs nδ  so that a 
difference in two climate benchmarks separated by time interval Δt as  

 nsd δαδ +Δ= t  (2) 

We use α to scale the signal, as it might emerge more rapidly with time than we anticipate. Detection in one 
corner of the space of the data type is generally strongly correlated with other corners of the space because 
natural variability is strongly correlated across the space. On inter-annual timescales, for example, the entire 
tropics fluctuates nearly coherently, a consequence of ENSO events. Likewise, fluctuations at high northern 
(southern) latitude are correlated over the entire region as a consequence of the Northern (Southern) Annular 
Mode. On long timescales, it is reasonable to assume these fluctuations are roughly normally distributed, so 
that we can write  

 ),(~ vNt Σ0sdn Δ−= αδδ  (3) 

with Σv the covariance matrix of fluctuations nδ . The solution for the most likely α and its associated 
uncertainty is  
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Because of the computational limitations in estimating Σv, it becomes necessary to retain just a small number 
of its eigenvalues and eigenvectors in forming its pseudo-inverse.  

For radio occultation, it is highly preferable to use downward integrated refractivity, or dry pressure, for 
purposes of climate monitoring. For one, dry pressure, as opposed to refractivity, is better suited to analyzing 
trends in dynamical forcing of the atmosphere. Secondly, when discretized on a vertical grid, it should more 
accurately retain information on precipitable water in the atmosphere. Thirdly, trends in its logarithm can be 
very easily interpreted as thermal expansion of the atmospheric layers beneath a given level and thus 
temperature. If refractivity were used instead, it would become difficult to infer temperature and pressure 
changes. If dry temperature were used instead, all information on pressure is lost.  
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When detecting trends in a simulated data set, we have found that the first signal to emerge due to increasing 
well-mixed greenhouse gases should be at 40º to 50º latitude in both hemispheres. The effect is barotropic in 
the troposphere. If dry pressures were to increase only in these bands, it would represent poleward migration 
of the zonal wind maximum in both hemispheres, consistent with the universal prediction of climate models 
that mid-latitude climate regimes will all migrate toward the poles. The second signal to emerge above 
natural variability should be in the tropics. This signal, too, is barotropic in the troposphere. This represents 
thermal expansion of the tropical troposphere, the dominant natural mode of which is El Niño/Southern 
Oscillation (ENSO). See Leroy et al., Journal of Geophysical Research, 2006, for details.  

Estimating time scales to detection before a data set is obtained is a worthy activity, but it is unclear how this 
is useful for testing climate models. By itself, it isn’t. Instead, one expects that normal linear regression will 
be performed and statistical significance evaluated. Linear discriminant analysis is ideally suited to this task. 
In order to test a climate model, then, one would compare the trends produced by transient runs of that 
climate model to observed trends. Agreement is highly desirable, of course, but disagreement would beg the 
question of its causes. It is possible that an expert climate modeler would have the intuition to find the source 
of climate model error responsible, but there is no guarantee of the uniqueness of a solution. For this reason, 
we have not pursued this specific approach to testing climate models to date. We have instead directed our 
efforts toward climate prediction.  

Certainly, all climate models are “wrong” in that it is always possible to find a comparison between model 
and data that is unfavorable to a model. This makes it difficult to determine which model is more “right” than 
the others. To complicate matters, different models can have different strengths: one model might predict 
trends in ENSO frequency and intensity well but fail at predicting trends in the North Atlantic circulation 
while another model does exactly the opposite. One cannot say that one model is better or worse than the 
other. Instead, what we really want to know is how a model can be evaluated for its strengths and 
weaknesses in predicting trends in a specific variable (or scalar) and how that can be done with data. If we 
assume that trends are more reliable indicators of climate predictive capability than means, one can form a 
joint probability distribution of trends in an arbitrary data set dtdd  and trends in a scalar of interest dtdα . 

The joint probability distribution )|( dtddtdP dα  should cover all sources of uncertainty in climate 
prediction. What is generally required is a perturbed physics ensemble (PPE) of runs of a climate model 
subjected to historical radiative forcing. Such a PPE must be incredibly large because the joint probability 
distribution can have a very large number of degrees of freedom.  

In our approach, we instead assume that, while climate models produce a wide range of uncertainty in the 
sensitivity of the climate system, they nevertheless show broad agreement in the patterns of climate change. 
Our linear model is  
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in which idd )( αd  is the amount of change dd in an arbitrary data type for a corresponding change dα in an 
arbitrary scalar as produced by climate model i. For many data types, climate models do yield very similar 
patterns of change )( αddd , but there are differences between models. Those differences must be taken into 
consideration. Given an ensemble of models, the most likely estimate for the scalar trend )/( dtdα  is given 
by  
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Figure 1. Generalized scalar prediction for the surface air temperature in the Sahel. The top figure shows 
the contravariant fingerprint when gridded tropical surface air temperature is the data field and Sahel 
surface air temperature is the target scalar. The model output of the SRES-A1b runs of the IPCC AR4 
models were used to “train” the contravariant fingerprint. The lower plot shows the Sahel surface air 
temperature for the first twenty years in black, the indicator time series in red, a forecast shown as the 
blue envelope, and the future evolution of Sahel surface air temperature in gray.  

Care must be taken in the construction of s  and Σ. The former is the mean signal form over all models, each 
producing ii dd )( αds = . The latter is the sum of the natural variability covariance and signal uncertainty 

covariance  where uv ΣΣΣ +=

 T
iiu )()( ssssΣ −−=  (7) 

where the ensemble average is taken over all models of the PPE.  

The mathematics should be familiar to those familiar with optimal estimation or variational data assimilation, 
but the construction of the various terms makes this a uniquely “climate” problem. This derivation makes no 
demand on the type of data d, on the scalar in question α, or that there needs to be an obvious relationship 
between the two. The scalar can be highly localized, and the data can be a gridded global field. For this 
reason, generalized scalar prediction is an analysis method which allows very large scale phenomena to be 
useful for attributing trends to global scale phenomena. The IPCC AR4 recognized the lack of a statistical 
method to apply the high confidence of detection of anthropogenic climate change at large scales to trends at 
much smaller scales. Generalized scalar prediction fills that gap.  

Generalized scalar prediction works by searching the data space for information on the scalar that is 
generally agreed upon between all model realizations in the PPE and where inter-annual variability is 
relatively small. If s  is the fingerprint for the scalar detection, f is the contravariant fingerprint. The 

 
148 GRAS SAF Workshop on Applications of GPSRO measurements, ECMWF, 16-18 June 2008 



S S. LEROY  J. G. ANDERSON: TESTING CLIMATE MODELS WITH GPSRO MEASUREMENTS 

contravariant fingerprint shows what physical phenomena contain reliable and sensitive information to pick 
out the underlying trend of the scalar. In Fig. 1 we show the contravariant fingerprint when we take tropical 
surface air temperature as the data field and surface air temperature in the Sahel as the target scalar. In a 
zonal average sense, the higher latitudes in the tropics are positive and the equatorial tropics are negative, 
showing that the difference in surface air temperature between higher and lower latitudes is a powerful 
indicator for temperature change in the Sahel. We expect the meridional gradient in surface air temperature 
to change due to expansion of the Hadley circulation. That Sahel temperature is related to Hadley cell 
expansion was anticipated subjectively by the IPCC AR4. Generalized scalar prediction bears this out 
objectively and quantitatively.  

 

 
Figure 2. Generalized scalar prediction applied to upper air log-dry pressure with global surface air 
temperature as the target scalar.  The scheme is the same as in Fig. 1 but with the 1 prediction envelope 
in light red. 

In Fig.1 we also show “indicator” time series. The indicators are the results of multiplying the contravariant 
fingerprint f by the data field for each time interval. The slope of the indicator time series is the same as the 
optimally estimated slope in Eq. 6. The dimensions of the indicators are the same as those of the target 
scalar, which in this case is surface air temperature in the Sahel. To show the performance of generalized 
scalar prediction, we compare the indicator time series to the actual surface air time series for the Sahel, at 
least when applied to the output of a climate model (not used in formulating the contravariant fingerprint). 
The indicator time series has the same slope as the actual time series of surface air temperature in the Sahel 
but with most of the inter-annual variability removed. This we call “optimization”, and it comes about 
because the data field extends beyond the domain that defines the scalar and thus can add physical 
information that isn’t available in the Sahel alone. Most importantly, the precision of the prediction is ~0.1 K 
30 years into the future. It happens to be accurate as well, as the future evolution simulated by the model 
bears out.  
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One problem in optimal fingerprinting techniques is overcome and another problem is introduced by 
generalized scalar prediction. In optimal fingerprinting, it is necessary to truncate the eigenmodes of the 
natural variability covariance matrix when forming its inverse because of the existence of unrealistically 
small eigenvalues in most formulations of the matrix. Depending on how the truncation is performed, it is 
possible to arrive at very different estimates of scalar trends. Others have pointed out that the problem can be 
addressed by demanding that post-fit residuals be consistent with the prescription of natural variability, but 
even this prescription isn’t necessarily a good one. The essence of the problem is that optimal fingerprinting 
searches in subspaces where natural variability is small in comparison with the signal, but often the signal in 
those subspaces is highly uncertain. The importance of signal shape uncertainty was pointed out over 20 
years ago. It “fuzzes” out the subspaces of uncertainty in signal shape and thus prevents optimization in those 
subspaces. On the other hand, in generalized scalar prediction at present there is no method for determining 
consistency of the contravariant fingerprint and the actual data.  

We apply generalized scalar prediction to the zonal average of the logarithm of dry pressure as might be 
produced by GPS radio occultation. See Fig. 2. The signal of zonal average log-dry pressure is of expansion 
of the tropical troposphere with some poleward expansion of climate regimes. In Fig. 2 we show the 
contravariant fingerprint and indicator time series as in Fig. 1. The target scalar is global average surface air 
temperature. The contravariant fingerprint subtracts thermal expansion of the tropical troposphere from 
increased humidity of the lower tropical troposphere and adds in some poleward migration of the maximum 
wind location in mid-latitudes. GPS radio occultation clearly contains enough information to track global 
average surface air temperature. There is no optimization, though, possibly because of a one-to-one 
relationship between the dynamical state of the upper atmosphere and the distribution of surface air 
temperature.  

Generalized scalar prediction makes it possible to relate GPS radio occultation dry pressure to any scalar of 
the climate system. With a simulation study, we can find out how much GPS RO can contribute to climate 
forecasting to any variable of interest. We can also find out what physical developments in climate change 
are most relevant to long-term trends of that variable of interest.  


