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1 Introduction

All physical variables, except periodic ones like wind direction, are bound both from below and above by
physical laws. Although this is most obvious for a variable like humidity, which is limited by a phase transi-
tion, other quantities like wind speed, temperature and pressure are limited by energy and mass conservation
constraints. These limits are a function of the state of the physical system. A warm atmosphere can hold more
water vapour before phase transitions occur than a cold one. The maximum wind inside a jetstream is limited
by the available energy supply.

Let us now look at the effects on these limits on model forecasts and their errors. Assume we have an accurate,
unbiased model which stays close to all the physical laws of interest. Forecast errors of an event at the limit
of what is physically realizable will all fall at or below the correct value, since it should be impossible for the
model to cross the limit of the realizable by design. The conditional probability distribution of the forecast
errors, given that the truth is at the limits of the possible, is one-sided. Close to the physical limits, the
distributions are no longer one-sided, but they are still skewed away from the limits.

As an example, consider the following humidity error behaviour. Moving from an upper tropospheric cloud
to a nearby dry intrusion from the stratosphere, the humidity error drops by a factor of ten thousand. In
the cloud the error distribution is almost one-sided, since any attempt at increasing humidity would just be
met by condensation. In the dry intrusion the errors are severely biased towards increase in humidity, since
any decrease is limited by the amount of humidity available, which is small. Close by floats a large blob of
supersaturated air which mainly remains supersaturated, with the result that forecast errors are skewed towards
positive values. In the vertical large gradients of humidity across the nearby tropopause add further to the
inhomogeneity of the errors.

This inhomogeneous behaviour means that a detailed flow and thermodynamic state dependent description of
the error pdf is needed. One way forward is to use a conditional pdf to effectively separately model different
cases, giving a better knowledge of the background errors and improved description of extreme situations.

In this paper we focus on the treatment of nonlinearities in the control variable transform, including treatment
of supersaturation. For further background on the humidity control variable see H6Im et al. (2002) and Dee
and Da Silva (2003).

2 From physical to statistical limits

The problems we encounter close to the physical limits of the humidity concentration are signs that our as-
similation model and/or its numerical representation are unphysical. The effect of the data assimilation on
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the model time evolution can be seen as a source/sink Sthat is added to the model at the analysis time tj, in
addition to the models normal forcing R, so that the evolution of the model state x from time tpto t,,_, is
Xn—|—1 _ Xn + tn+1(
tn
If the assimilation term Sis proportional to the field itself (S= A(¢)x, A > 0), the assimilation can not cause
negative concentrations. If the proportionality term also includes all the conversions from humidity to con-
densed water and associated precipitation, humidity will never overshoot physically realistic saturation levels.
However, these nonlinear processes are not easily implemented in a mainly linear assimilation framework.

R+ 5(t —ty)S)dt 1)

An alternative approach is to statistically characterise the asymmetry of the background errors for each state
of the model, which gives skewed error distributions near the physical limits of the model. These skewed
distributions would only be applied at the nonlinear outer loop level of the assimilation, with the inner loops
using linear approximations. Below we will study this approach further within a simple generic framework,
the harmonic oscillator.

3 lllustration: Background error for a harmonic oscillator

A simple harmonic oscillator, such as a simple pendulum, oscillates with a simple harmonic motion between
the maximum displacements x = +A when slightly disturbed from the equilibrium state x = 0. The displace-
ment from equilibrium for a harmonic oscillator with maximum displacement x(t) = Aatt =0 s

X = Acos wt 2

where t is time and w is angular frequency. The error characteristics of an initial state for a harmonic oscillator
(the background x?) depend on the displacement. If the background is close to the maximum displacement, the
background error probability distribution is skewed towards the equilibrium value. The most extreme case is
for X2 = +A where the distribution is one-sided. To show concrete examples of this, consider a gaussian error
distributions for the angular frequency wP of the background,

be,) = — T g 3(Ea/ow)

PP(gy) = aw\/fre ®)
The probability distribution for the displacement background error is obtained by analytical transformations
and depends on the background displacement itself, as shown in Fig. 1. As can be seen, the displacement
background error has an asymmetric distribution, which makes a gaussian distribution an inaccurate model.
However, when the background error is plotted as a function of both the background and the analysis, the error
distribution is symmetric with respect to the axis x? = x2. We can now construct a transform that make the
error distribution symmetric by replacing PP(&x|x®) by Pb(5x|xb%xa). Since x& = X + Jx this is equivalent
to PP(dX|x° + 36X). The symmetrizing transform is nonlinear, since it makes the background error model
dependent not only on the background but on the analysis increments dx as well.

3.1 Symmetrizing

A practical way to construct the transform, using forecast pairs (Fisher and Andersson 2001), is as follows.
Divide the forecast differences into classes according to the value of @ = X?J;Xg, where @ will be called the
stratifying variable. For each class, construct a histogram of the differences dx in order to estimate the form
of the probability density function for that class. By construction, the pdf for each class is symmetric, but the
shape and variance are a function of the stratifying variable ®. In Fig. 2 we show a few of the resulting pdf’s

and the variance for the harmonic oscillator as a function of the stratifying variable.
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Figure 1: Probability distributions for the background error of a simple harmonic oscillator (Eq. 2 with
A = 1; angular frequency error distribution, Eq. 3, gaussian with g, = 0.1). (a) Conditional probabil-
ity PP(dx|xP) for x* = 0,40.3,40.5,+0.7,+0.8,+0.9. (b) Probability as a function of background and
analysis P°(x,x?), x& = “Forecast 1’ and X = ‘Forecast 2.
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Figure 2.  Symmetrized probability density functions (left) for different values of (x; +X,)/2 and the
standard deviation of the conditional pdf’s (right) for all values.
3.2 Gaussianizing

These distributions turn out to be very close to a gaussian, which was established by plotting the first four
moments of the distribution (not shown). For completeness, we now discuss what to do if the distribution
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differs significantly from a gaussian, although we have not needed this transform when modelling humidity
errors. For a given @, transform the dx axis by finding f(dx, ®) such that the probability that £ < dx equals
the probability that n < f(dx,®) for a normal gaussian distribution,

f(ox®) 1

n(6x) = [ p(eoys = [ enan - ng(r(ox o) @

where I are the cumulative pdf’s. Inverting the gaussian cumulative distribution then gives

f (0%, ®) = NgH(M(3x|P)) (5)

3.3 Normalizing

Finally divide the forecast errors by o0, (®) to get a (near) gaussian error distribution with (close to) unit
variance. The complete control variable transform is then

e 52

(6)

3.4 Implementing nonlinear analysis

The background error cost function that is being solved is nonlinear due to the nonlinearity of the control
variable transform ¢

Jp(8x) = ¢ (5X)B™¢(5X) (7

Practical implementation within a variational assimilation framework mostly requires linear inner loops, with
nonlinearities collected at outer loop level. Thus the inner loops would use the linearized control variable,

= f(oxx°)
RN ©

In the outer loops, use the X given by the inner loops, and solve the increment dx from the nonlinear equation

f(OX, X+ 1ox) —~—
T(oxx7 70%) +12 ) _3x=0 ©9)
0, (X0 + 50X)
In many cases, e. g. for humidity, the above is simplified by omitting the gaussianization transform f. The

nonlinear equation can be solved by e. g. Ridder’s method, where one iteration may provide sufficient accuracy
in our experience.

4 Supersaturated humidity background errors

Until recently significant supersaturation was not present in the ECMWF model. Cloud physics changes by
Tompkins et al. (2007) changed that by modelling supersaturated water vapour with respect to mixed phase in
the upper troposphere.
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Figure 3. Forecast differences orh at 850 hPa. The left panel shows the pdf’s for lowest, median and
highest 2.5% values of rh? + %6rh, and the right panel shows the standard deviation and bias as a function

of rh® + 13rh. The pdf’s compare reasonably well with the Gaussian (black line).

4.1 Characteristics of the humidity background errors

Without supersaturation, the humidity variances o (rh® 4 %6rh) can be reasonably estimated by height-dependent
convex functions, which go to zero at rh? + 25rh = 0, and to low values at rh° + 25rh = 1, with a single max-
ima in between (see Fig. 3). It is convenient to refer to three different regimes when discussing supersaturation,
related to the ECMWEF’s cloud schemes interpretation of condensed water: ‘warm’ T > 273K is pure water,
mixed 273K > T > 250K is mixed water and ice, and T < 250K is pure ice. Significant supersaturation (with
respect to mixed phase) only occurs for temperatures in cold conditions below 250K, where the cloud param-
eterization considers all condensed water as ice, see Fig. 4. For these conditions (e. g. upper troposphere) a
second mode appears in the background errors as a function of rh° + %6rh. The examples in this paper model
the vertical variation of the nonlinear transform as a function of temperature, which in practice is not the best
choice, since temperature stratification blends stratosphere and troposphere with different characteristics in
each bin. This only affects the statistics at very low humidity values, but it is important to get correct limiting
behaviour at low rh. Otherwise the background error can easily be overestimated by several orders of mag-
nitude, resulting in a very bad condition number for the analysis if for example a humidity sensitive radiance
is assimilated in the area. A better choice for the vertical stratification of the nonlinear transform/variances is
model levels, pressure, or other coordinate monotone with respect to height.

4.2 Separatetreatment of sub/supersaturated humidity

Unfortunately the nonlinear inversion which takes into account the asymmetry of the background error pdf’s
does not work for non-convex functions. The increments would no longer be a monotone function of the
control variable, which is unphysical and can lead to multiple solutions. To cope with this, we suggest a
separate treatment of supersaturated conditions. We divide the forecast differences into two classes depending
on whether the background relative humidity is above or below rhP = 1. If we can model the control variable
for each class by a convex function, then the nonlinear transform is again viable.

Figure 5 shows warm and mixed conditions (T > 250K) as a function of rh® 4 %6rh, separated into two classes:
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Figure 4: Background error standard deviation Jb(rhb+ %6rh) for different temperature intervals, approx-
imately corresponding to increasing height. The left panel shows ‘warm’ and ‘mixed’ temperatures above
250K, and the right panel shows “cold’ temperatures below 250K, where the cloud parameterization con-
siders all condensed water as ice.

rhP < 1 (left) and rh° > 1 (right). To a good degree all conditions can be modelled by a convex function, which
reaches slightly into the supersaturated region, but mostly remains subsaturated. From a practical point of
view, there does not seem to be any need to separate sub- and supersaturated conditions in this case. The
warmest temperature range shows a double peak, related to low clouds, which can also be smoothed over by a
convex approximation. For the cold conditions, Fig. 6, there are two separate distributions which each can be
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Figure 5: Background error standard deviation ab(rhb+ %5rh) for different warm and mixed temperature
intervals T > 250K. In the left panel rh® < 1 and in the right panel rh® > 1.

modelled by a convex function, again smoothing over any dips, e. g. at rha 1, with reasonable accuracy. In
Fig. 7 we look more closely at how the analysis moves between sub- and supersaturated regions.
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Figure 6: Background error standard deviation Ub(rhb + %érh) for different cold temperature intervals
T < 250K. In the left panel rh® < 1 and in the right panel rh® > 1.

For warm conditions (right) both background and analysis predominantly remain below saturation, with the
analysis at most reaching a few percent supersaturation. Above it was concluded that the background error pdf
can be modelled by a single convex pdf in this case, and Fig. 7 shows that this pdf needs to include a couple of
percent supersaturation, allowing transition into slight supersaturation.

For cold conditions (left), there is a significant proportion of moist points which change from sub- to supersat-
urated conditions and vice versa. If we model the pdf of background errors by two separate convex conditional
distributions as suggested above, one for rhP < 1 and the other for rh® > 1, Fig. 7 shows the range necessary for
the two distributions. For this particular temperature range, the pdf for rh® < 1 can go up to %(rhb+ rh?) ~ 1.2,
i. e. rh® < 1.4. This allows for a transition from sub- to supersaturated conditions. The pdf for rhP can go
down to 3(rh®+rh?) 2 0.7, i. e. rh® > 0.4, allowing super- to subsaturated transition.

At each outer loop iteration the choice of conditional pdf is determined by the value of the nonlinear trajectory,
thus allowing for different choice on different iterations as needed. It should be noted finally that the splitting
of the pdf into two as a function of rhP does reintroduce some asymmetry in the conditional pdf’s close to
saturation. But that disadvantage is hopefully balanced by the simplified description of the nonlinear error
behaviour close to saturation.

5 Conclusions

Variables limited by upper and lower physical bounds, like humidity, have asymmetric background errors close
to these limits. A nonlinear transform, which symmetrizes the error pdf’s, can be applied at outer loop level
in the assimilation to address this. The extension of this nonlinear transform to supersaturated conditions is
not trivial, since the supersaturation produces a second mode in the error statistics. The nonlinear transform
must be convex for the increments to be a monotone function of the control variable, but this is impossible for
a function with two maxima. A pragmatic solution is to treat the error statistics of the two modes separately,
which gives two convex functions and enables a separate nonlinear transform for each case.
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Figure 7: Pdf’s of rhP + %6rh for a cold (left) and warm (right) temperature range. Each plot shows three
distributions: rh® < 1 and rh? < 1 (blue); rh® > 1 and rh > 1 (red); rh® < 1,rh®> 1 orrh® > 1, rh® < 1
(black).
References

[1] Dee, D.P., and A. M. Da Silva, 2003: The Choice of Variable for Atmospheric Moisture Analysis. Mon.
Wea. Rev,, 131, 155-171.

[2] Fisher, M. and E. Andersson, 2001: Developments in 4D-Var and Kalman Filtering. ECMWF Research
Department Technical Memorandum 347.

[3] HoIm, E., E. Andersson, A. Beljaars, P. Lopez, J.-F. Mahfouf, A. Simmons and J.-N. Thépaut, 2002:
Assimilation and Modelling of the Hydrological Cycle: ECMWF’'s Satus and Plans. ECMWF Research
Department Technical Memorandum 383.

[4] Tompkins, A. M., K. Gierens, and G. Rédel, 2007: Ice supersaturation in the ECMWF integrated forecast
system. Q. J. R. Meteorol. Soc., 133 53—63

150 ECMWEF workshop on flow dependent aspects of data assimilation, 11-13 June 2007



	1 Introduction
	2 From physical to statistical limits
	3 Illustration: Background error for a harmonic oscillator
	3.1 Symmetrizing
	3.2 Gaussianizing
	3.3 Normalizing
	3.4 Implementing nonlinear analysis

	4 Supersaturated humidity background errors
	4.1 Characteristics of the humidity background errors
	4.2 Separate treatment of sub/supersaturated humidity

	5 Conclusions

