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Abstract 
Dynamical downscaling has been applied to global ensemble forecasts to assess its potential impact during cases of 
severe weather (precipitation and wind) over various parts of Croatia. It was based on the Croatian 12.2-km version of 
the Aladin limited area model, nested in the ECMWF TL255 (approximately 80 km) global Ensemble Prediction 
System (EPS). The 3-hourly EPS output was used to force the Aladin model over the central European/northern 
Mediterranean domain. Four synoptic cases are considered, for which both global EPS and regional Aladin 51-member 
ensembles were run.  

 From synoptic cases studied in more detail, downscaling brings improvement in one case where a well-resolved small-
scale orography was important. In the second case, no improvement in the downscaled ensemble is seen. This was the 
case with severe weather defined at very small scales over an area of Croatia with no major orographic differences 
between the global and regional models. In the third case, severe weather covered a large area over the Adriatic Sea and 
the coastal Croatia and it was well captured by the global model. For this case, the limited area model yielded only a 
relatively little improvement in both synoptic development and in terms of probabilistic forecasts for precipitation and 
wind.  

Our results indicate that downscaling can have a large impact on clustering: when applied to both global and 
downscaled sets of ensembles the same clustering algorithm may yield differing results. For example, even in the case 
when clusters in both global and regional models are made of the same individual members, cluster means could differ 
considerably. This implies that downscaling may affect dynamical and physical properties of the global ensemble 
forecasts. It has been argued that this is due to explicitly resolved small spatial scales in the downscaled ensemble, in 
particular to those related to orography. Therefore, in the process of downscaling, it may not always be feasible to make 
a selection (or a subset) of global ensemble members that might be representative of all possible evolution scenarios. 
This notion is supported by a larger spread in the Aladin than in the EPS ensembles for the fields closely related to 
small-scale variations in orography (for example, wind and vertical velocity). 

Although this paper discusses too few cases for any statistically significant conclusions to be drawn, it provides useful 
indications on the accuracy of the ECMWF EPS and on the Aladin ensembles in cases of severe weather. Since from 
the cases considered no clear-cut difference between the global and the downscaled ensembles was detected, additional 
work with more synoptic cases and more detailed analysis is required to be able to draw some comprehensive 
conclusions. 

1. Introduction  
Synoptic case studies have always been useful for analysis and better understanding of the capabilities of 
numerical models to simulate physical and dynamical processes related to severe weather like, for example, 
strong precipitation, flash floods, gale force winds, hail storms, etc. Although these studies are normally 
based on a limited amount of readily available observational data, they provide very valuable indications of 
the strengths and weaknesses of the models under assessment.  

The focus of a case–study analysis is usually closely linked with the characteristics of the models used in the 
investigation - whether they are relatively low resolution atmospheric global circulation models (AGCMs) or 
relatively high resolution regional models (RMs). For an AGCM, the main concern is to establish whether it 
is able to reproduce large-scale circulation that preceded and ultimately led to a given severe weather event. 
For example, using the European Centre for Medium Range Weather Forecasts (ECMWF) deterministic 
AGCM, Jung et al. (2004) studied several European storms: the Dutch storm of 1953, the Hamburg storm of 
1962 and the October 1987 storm. The latter severely affected the northern France and the southern United 
Kingdom. They concluded that despite some underestimation of the severity of the storms, reliable 
predictions of severe weather by ECMWF global model were possible several days in advance.  
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In the second group of case studies, attention is focused on smaller-scale phenomena, since RMs enable a 
better spatial and temporal resolution, normally required to accurately analyse synoptic and meso-scale 
atmospheric features related to severe weather. For example Shutts (1990) claims that the UK Met Office 
fine-mesh model successfully predicted the details of the above-mentioned October 1987 storm. Several 
synoptic-scale studies have been made in the Croatian Meteorological and Hydrological Service (CMHS) 
with a limited area model, normally employed for short-range operational forecasting. Various local 
phenomena have been studied, many of them related to severe weather (e.g. Tudor and Ivatek–Šahdan 2002, 
Ivančan–Picek et al. 2003, Strelec–Mahović and Drvar 2005, Ivatek–Šahdan and Ivančan–Picek 2006). 
Although in each of the above CMHS studies a single RM run was made, the results enabled a detailed 
insight into various aspects of processes defined on relatively small scales.  

In the past decade, ensembles of forecasts brought new, both qualitative and quantitative, improvements to 
the process of operational forecasts and have become an indivisible part of operational forecasting practice in 
many weather services. Thus, the 1990s pioneering work at ECMWF (e.g. Molteni et al. 1996, Buizza 1997, 
Palmer et al. 1997) has led to a widespread application of the atmospheric predictability theory in the 
medium-range (e.g. Lorenz 1982). Global ensemble forecasts have been used to revisit interesting cases: for 
example, Buizza and Hollingsworth (2002) used the ECMWF ensemble prediction system (EPS) to study the 
December 1999 European storms. They found that the EPS was a valuable tool for assessing the risk of 
severe weather and issuing early warnings. Similarly, Buizza and Chessa (2002) studied the impact of a 
stochastic parameterisation (Buizza et al. 1999) on the EPS forecasts of a severe storm that affected the US 
in January 2000, and concluded that the stochastic parameterisation improved the capability of the EPS to 
simulate the storm’s development. Jung et al. (2005) showed that the ensemble forecasts could have provided 
extremely valuable supplementary information to that generated by a single, high-resolution (deterministic) 
forecast in the case of the October 1987 storm. They concluded that the EPS was capable of predicting large 
uncertainties associated with the timing of the storm.  

Because of their relatively coarse resolutions, AGCMs cannot resolve small-scale features and their 
usefulness to study phenomena at sub-synoptic scales is limited. Severe weather events are often associated 
with a relatively large variability of atmospheric small-scale parameters, which in turn might be related to 
variations in local topography. Thus, in order to better evaluate and understand local processes, and to be 
able to verify them against observations, there appears a need to carry out dynamical downscaling of global 
ensembles. Such downscaled ensembles might be useful for further applications in e.g. hydrological and 
crop-yield models.  

The purpose of this study is twofold. First, we try to identify the differences in the statistics between forecast 
ensembles made by an AGCM and the downscaled forecast ensembles made by a RM. Such statistics is 
extended to clusters that were derived in identical way from both global and regional ensembles. Second, the 
differences in the (ensemble) analysis of selected synoptic cases between the two types of models are shown 
and discussed. In this paper, multiple model realisations are linked, through the downscaling of the AGCM 
results, to a limited domain of interest. Of course, such attempts have already been made (e.g. Stensrud et al. 
1999, Montani et al. 2001, Marsigli et al. 2001, Frogner and Iversen 2002). There is no unique approach to 
dynamical downscaling of ensemble forecasts. Some authors, for example, applied the so-called 
“representative members” approach (e.g. Molteni et al., 2001; Montani et al., 2001). This implies various 
intermediate steps in order to define a reduced number of members for dynamical downscaling that 
characterise all possible evolution scenarios of the global model EPS. It is important to emphasise that in this 
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study dynamical downscaling is applied to all global model ensemble members. Whilst some pieces of 
information are inevitably lost in the selection of representative members, no such a loss in our approach is 
possible. Thus, dynamical downscaling of the whole global model ensemble represents an ultimate way of 
applying ensembles to smaller spatial scales. Due to a relatively large computational demand such an 
approach might not, at present, be viable in an operational practice. 

In the next section experiments and methodology are described. Section 3 deals with a general (statistical) 
comparison between the results from the global model and regional model ensembles, irrespective of how a 
particular model performed during the given synoptic developments. The details of synoptic situations and 
various aspects of the results from the two sets of ensembles (global and regional), with the emphasis on 
precipitation probabilities and possible gains that may be attained by dynamical downscaling, are shown and 
discussed in section 4. Summary and some conclusions are given in section 5. 

2. Experimental design  

2.1. Models and dynamical downscaling 

For this study, the global ensembles were generated by the ECMWF model cycle 28R4 that was in ECMWF 
operations from 18 October 2004 till 5 April 2005. The model was integrated at the TL255 spectral 
resolution (approximate horizontal resolution 80 km) with 40 levels in the vertical and a 45-minute timestep. 
ECMWF EPS initial conditions (ICs) were made as in ECMWF operations. The global model ensembles 
contained 51 members each. 

In order to create lateral boundary conditions (LBCs) for dynamical downscaling by the Aladin (Aire 
Limitée Adaptation dynamique Développement InterNational) RM, the 3-hourly output from ECMWF EPS 
(hereafter referred to as ECEPS) was used. LBCs were defined separately from ECMWF model levels and 
surface data. The upper-air LBCs were interpolated from ECMWF model levels to Aladin model levels, and 
also converted to the appropriate format. For surface fields, a selected output from the ECMWF 4-layer land-
surface model (van den Hurk et al. 2000) was scaled to accommodate the Aladin 2-layer surface scheme 
(Giard and Bazile 2000). The ECMWF surface parameters soil temperature, soil water and snow depth were 
converted to Aladin’s soil temperature, soil water and ice and snow depth. No other modification or 
manipulation with ECEPS output data has been carried out.  

The full set of such defined ICs and LBCs from ECEPS was then applied to Aladin, i.e. Aladin ensembles 
(hereafter referred to as ALEPS) also contained 51 members. The Aladin RM was run at the regular 12.2-km 
grid, at the Lambert conformal projection, with 37 levels in the vertical and with the timestep of 514 s (8.6 
min). The central point of the integration domain was positioned at (17°E, 46.2°N) with 229 grid points in 
the x direction and 205 grid points in the y direction, thus covering central Europe and the northern 
Mediterranean. The Aladin dynamical core is similar to that of ECMWF EPS (the integrated forecasting 
system - IFS); however, the physical parameterisations in the two models are different. The references that 
describe the Aladin RM in more details are given in, for example, Ivatek-Šahdan and Tudor (2004). 

In addition to physical parameterisations, one of the most important differences between ECEPS and ALEPS 
is the definition of orography field. Fig. 1a,b shows orography in the Aladin integration domain for both 
models interpolated, for the comparison purpose, to the regular 0.5×0.5° latitude/longitude grid. The 200-m  
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Figure 1 Model orography at 0.5°x0.5° resolution in a) Aladin, b) ECMWF EPS, and c) the difference 
Aladin minus ECMWF EPS. Contours in a) and b) 400 m starting from 200 m. Contours in c) 300 m with 
positive contours in red and negative contours in blue. 
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contour (yellow shading) encircles approximately the same area in both models. However, whilst the 
maximum height of the Alps in ECEPS is below 1800 m, in the Aladin model it exceeds 3400 m. The 
maximum orographic difference between ECEPS and ALEPS models, located in the western Alps at about 
(8°E, 46°N), exceeds 1800 m (Fig. 1c). Other large differences are seen in the southern Turkey (over 1500 
m), central Italy (1200 m) and in the Carpathian Mountains, the Pyrenees and in the southern Greece (over 
900 m). In addition to the Alps, the improvement in the orographic representation in ALEPS is seen over the 
mountains of the Balkan and Italian peninsulas and large Mediterranean islands. When compared to ECEPS, 
the orography in Croatia has been “raised” in ALEPS between 300 and 600 m in the eastern Adriatic coastal 
region and its hinterland. Fig. 1c also indicates an increase in the horizontal orography gradient in Aladin 
near steep and high mountains. For example, the north-south section near 8°E shows the “deepening” of the 
river Po Valley in the northern Italy by about 900 m. It is expected that such differences in orography would 
contribute to the differences in orography-related fields, like, for example, precipitation or surface 
temperature. 

2.2. Data and methods 

Four ECMWF ensembles were run with a 3-hourly output for dynamical downscaling with the Aladin 
model. The results from these four cases were used to compare various statistical properties of ECEPS and 
ALEPS. These four synoptic cases, two summer (SU) and two autumn (AU) cases, are summarised in 
Table 1. Whereas ensemble statistics is based on all four cases (section 3), only three cases are studied in 
more detail in section 4. They are the cases of severe weather that occurred over various parts of Croatia in 
the summer of 2003 and autumn 2004. Based on their intensity and inflicted damage, these three cases may 
by no means be considered as extreme weather events when compared with some other Mediterranean 
storms discussed by, for example, Montani et al. (2001, 2003) or by Tripoli et al. (2005). However, they are 
typical of severe weather that occasionally hits Croatia and therefore are appropriate to be studied by an 
ensemble prediction system. The fourth synoptic case has not, in terms of severe weather, affected Croatia. 
Some other parts of central Europe, in particular the lower Austria and the Tatre Mountains region in 
Slovakia and south Poland experienced gale force winds and excessive precipitation (both rain and snow). 
For this case, the ECMWF EPS indicated a possible increase in precipitation and wind in the westernmost 
part of Croatia, and therefore it could be characterised as a sort of a “mild” false alarm.  

Case Initial time and date Target forecast period for  
case study 

SU1 00UTC 2 July 2003 T+60 to T+72 

SU2 00UTC 26 July 2003 T+66 to T+78 

AU1 00UTC  12 November 2004 T+36 to T+72 

AU2 00UTC 17 November 2004  
 
Table 1 The four ensembles and three synoptic cases described and discussed in the main body of the 
paper with respective initial dates and target forecasting periods. 

Since this study derives from a presumed capability of the RM to better simulate small scale features, and 
since a limited number of cases was considered, the verification is focused mainly on the synoptic analysis of 
the quality of cluster and of probabilistic forecasts. Such an approach could be justified because probability 
density functions (PDFs) might have been changed due to dynamical downscaling in a model with higher 
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resolution and different physical parameterisations. Thus, the clustering and probabilities in (downscaled) 
ensembles would help to identify details in forecast development and would hopefully enable more accurate 
operational prediction of severe weather events.  

3. Global model vs. limited area model 

3.1. Comparison of full ensembles  

We first discuss and compare some general properties (statistics) for the full ECEPS and ALEPS ensembles 
over the domain of interest. A relatively simple comparison of the two sets of ensembles is made against the 
ECMWF operational analyses. The latter appears a natural choice, because a common reference might seem 
desirable for the comparison of the two, to a certain extent, correlated ensembles. However, it also might be 
assumed that due to the difference in spatial scales between the two ensembles, the choice of ECMWF 
analysis as the reference for the comparison would favour ECEPS. As it is demonstrated below, this proves 
not to be the case. In the following, all the fields from both ensembles and from ECMWF analysis were 
interpolated to the regular 0.5×0.5° latitude/longitude grid. In section 4, a more detailed comparison between 
ECEPS and ALEPS based on case studies is given. 

In Table 2, the following three simple and relatively crude measures are shown: the ensemble mean absolute 
difference with respect to ECMWF operational analysis δe, the ensemble mean deviation σe (also measured 
with respect to ECMWF operational analysis), and the ensemble spread Se measured with respect to 
ensemble mean. For an ensemble of M individual forecast Fi, ensemble mean absolute difference δe with 
respect to verifying analysis A is given by 

 1 M

e i
i

F A
M

δ = −∑ , 

and likewise, ensemble mean deviation σe could be defined as the following  

 ( )
1/ 2

21
1

M

e i
i

F A
M

σ ⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑  

δe and σe measure overall departures of the two sets of ensembles from ECMWF verifying analysis and 
represent some sort of aggregated modelling error. Ensemble spread Se is computed as the distance between 
each individual ensemble member Fi and the mean of the ensemble eF , and averaged over all ensemble 
members. The expression is essentially similar to that for σe where the verifying analysis A is replaced by the 
ensemble mean eF  

 ( )
1/ 2

21
1

M

e i
i

S F F
M
⎡ ⎤

= −⎢ ⎥−⎣ ⎦
∑ e . 

In terms of probability distribution, spread of an ensemble measures the dispersion of forecast states. In the 
presence of small model errors, small spread usually indicates that the ensemble mean is relatively skilful. 
All statistical quantities discussed here, δe, σe and Se, are computed for various upper-air parameters at the 
T+48 hr forecast step over the domain (36°N–56°N, 2°E–32°E) and for all synoptic cases considered.  
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Mean absolute difference δe Mean deviation σe Ensemble spread Se Parameter Synoptic 
case 

ECEPS ALEPS ECEPS ALEPS ECEPS ALEPS 

SU1 0.65 0.57 1.64 1.56 1.39 1.35 

SU2 0.63 0.59 1.45 1.46 1.23 1.27 

AU1 1.97 2.01 4.91 4.83 4.29 4.18 

Z500 (dam) 

AU2 1.51 1.44 4.10 3.96 3.45 3.37 

SU1 0.75 0.63 1.50 1.36 1.14 1.07 

SU2 0.78 0.74 1.39 1.35 1.07 1.03 

AU1 1.45 1.49 3.40 3.34 2.92 2.82 

Z700 (dam) 

AU2 1.05 0.97 2.64 2.59 2.24 2.21 

SU1 0.70 0.78 1.44 1.35 1.16 0.91 

SU2 0.97 1.14 1.70 1.79 1.17 1.10 

AU1 1.17 1.18 2.43 2.35 1.91 1.82 

T850 (º) 

AU2 1.36 1.15 2.39 2.04 1.64 1.41 

SU1 1.85 1.85 3.10 3.18 2.00 2.10 

SU2 1.50 1.49 2.83 2.85 2.01 2.07 

AU1 2.63 2.60 4.87 4.97 3.45 3.57 

Wind 850  
(ms-1) 

AU2 3.08 3.12 5.47 5.45 3.50 3.60 

SU1 0.92 0.92 1.76 1.73 1.36 1.27 

SU2 1.00 0.91 2.00 1.91 1.49 1.53 

AU1 1.69 1.57 4.16 4.07 3.61 3.52 

RT 500/1000 
(dam) 

AU2 2.45 2.05 4.92 4.48 3.59 3.38 

SU1 0.57 0.63 1.17 1.14 0.94 0.80 

SU2 0.70 0.89 1.39 1.49 1.07 1.03 

AU1 0.98 0.95 2.23 2.16 1.84 1.77 

RT 700/1000 
(dam) 

AU2 1.26 0.97 2.32 2.00 1.61 1.45 

SU1 0.17 0.18 0.30 0.39 0.13 0.26 

SU2 0.12 0.13 0.26 0.33 0.18 0.26 

AU1 0.29 0.30 0.52 0.67 0.24 0.47 

ω500 (Pa) 

AU2 0.20 0.20 0.35 0.44 0.16 0.30 

SU1 0.18 0.19 0.30 0.42 0.15 0.29 

SU2 0.14 0.15 0.28 0.36 0.19 0.28 

AU1 0.31 0.32 0.58 0.71 0.28 0.46 

ω700 (Pa) 

AU2 0.20 0.22 0.35 0.48 0.19 0.34 
Table 2  The T+48 hr absolute mean difference with respect to ECMWF operational analysis (two left 
columns), mean deviation (two middle columns) and ensemble spread for ECEPS and ALEPS ensembles 
computed over the domain (36°N-56°N, 2°E–32°E). Bold print indicates the larger value of the two 
ensembles. 
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Overall, the mean absolute difference δe for ALEPS does not differ substantially from that for ECEPS. In 15 
out of the total 32 synoptic case/parameter combinations (8 parameters times 4 synoptic cases) the ALEPS δe 
was larger than the ECEPS δe (indicated by the bold typeset in Table 2). In 14 combinations, the opposite is 
seen, i.e. the ECEPS δe was larger than the ALEPS δe, and in 3 combinations the δe values were identical in 
both models. When the values for vertical velocity ω are excluded from the consideration the total number of 
the ALEPS combinations being larger than ECEPS drops dramatically from 15 to 8. Such a result broadly 
implies that, in our four synoptic cases, the dynamical downscaling reduces the modelling error for most 
parameters considered except for ω. In other words, a better horizontal resolution may introduce errors in 
parameters closely dependent on orography if they are “verified” against a relatively coarse resolution 
reference field.  

This is further confirmed for ensemble mean deviation σe. When σe values for ω parameters are excluded 
from Table 2, a fairly regular pattern of higher σe values for ECEPS than for ALEPS could be clearly seen 
(18 out of 24 values). This may seem somewhat surprising bearing in mind a potentially higher variability in 
ALEPS that would have stemmed from better-resolved smaller spatial scales. Part of the explanation for such 
results could be that most values for the non-omega parameters in Table 2 are related to upper-air fields that 
usually have relatively smooth features above model orography. This is confirmed by overall higher ALEPS 
than ECEPS σe values for wind at the 850-hPa level. The ω field from Table 2, though defined at upper-air 
levels, is by definition and its physical characteristics susceptible to a much stronger orographic influence 
than the other parameters.  

The higher ALEPS than ECEPS σe values for wind magnitude at 850 hPa could be indicative of an increased 
influence of a high-resolution orography on the low-level circulation variability. Clearly, the higher ALEPS 
orography “interferes” with the 850 hPa atmospheric flow in more grid points than in ECEPS. Also, a higher 
absolute mean difference δe for ALEPS T850 could be possibly attributed to the discrepancy in orographic 
heights between ECEPS and ALEPS (cf. Fig. 1). On the other hand, consistently larger δe and σe values for 
the autumn than for summer cases, irrespective of the model, could be associated with an increased natural 
atmospheric variability due to seasonal cycle. 

From Table 2, the largest differences in δe and σe values between ECEPS and ALEPS are found for T850 in 
the AU2 synoptic case (1.36 vs. 1.15 for δe, and 2.39 vs. 2.04 for σe) and again for relative topography. For 
T850, Fig. 2 illustrates that both models largely underestimate analysed temperature, i.e. the erroneous 
cooling is found over much of the western and central Europe. This cooling in ECEPS exceeds –4ºC over the 
Hungarian Plain, central Germany and the Czech Republic (Fig. 2a), the regions with a relatively 
inconspicuous orography (Fig. 1). Similar error pattern, but with somewhat reduced amplitude, is seen in 
ALEPS (Fig. 2b). For relative topography 1000/500, which in Table 2 shows the largest difference between 
ECEPS and ALEPS, the reduction in geopotential extends farther north, over the northern Germany and 
Poland (not shown). These results indicate that the largest differences between the two models are not always 
associated with high orography. For example, a part of the erroneous warming between +2 and +4ºC seen in 
ALEPS over the river Po Valley (Fig. 2b) is in the region of relatively large model orographic differences 
(more than 300 m, cf. Fig. 1c) though the orography itself is not very high there.  



Dynamical downscaling of ECMWF EPS forecasts … 

 
 

 
Technical Memorandum No.507 9

 
Figure 2 The 850-hPa temperature difference between ensemble mean and ECMWF analysis for the AU2 
synoptic case at T+48 hr for a) ECEPS and b) ALEPS. Ensemble mean in black solid, ECMWF analysis 
in red dashed, and the difference shaded. Contouring interval 4° for full fields and 2° for differences. 

Ensemble spread Se (the last two columns in Table 2) is constantly higher in ALEPS than in ECEPS for wind 
at 850 hPa and both ω fields. It could be argued that small spatial scales in Aladin cause a larger ensemble 
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spread in those fields that are in general more influenced by orography.  This statistic is consistent with 
ensemble mean deviation with respect to operational analysis σe . 

3.2. Clustering 

Clustering is the method by which individual forecasts from an ensemble that are close to each other are 
grouped together. The “closeness” of individual forecasts is based upon some objective criterion, for 
example, the root-mean squared (RMS) difference among individual members. The most common algorithm 
for clustering is the so-called Ward hierarchical clustering algorithm (Anderberg 1973). Clustering enables to 
identify some atmospheric features (flows, synoptic regimes) that might attain an increased probability for 
the occurrence. For example, in a forecasting system with relatively small systematic errors the most 
populated cluster would be normally accepted as the one having the highest probability (chance) of 
realisation. 

After manipulating the data from both ensembles in identical way, the comparison of the ECEPS and ALEPS 
results would enable a better insight and a more detailed assessment of potential benefits of dynamical 
downscaling. Thus, the standard ECMWF clustering algorithm (see for example, Atger 1999) has been 
applied to both ECEPS and ALEPS ensembles for all four cases considered. The smaller spatial scales 
contained in ALEPS may affect some ensemble properties, and eventually clustering results for ALEPS 
could be different from those for ECEPS, even if clusters were made of the same members. As before (see 
section 3.1), both ECEPS and ALEPS data were interpolated to the regular 0.5°x0.5° latitude/longitude grid. 
The clustering was performed over the domain (36°N–56°N, 2°E–32°E) for all parameters from Table 2 at 
the T+48 hr forecast step. In addition, it has been decided beforehand that the clustering algorithm would 
generate no more than three clusters.  

3.2.1. Cluster size and common members 

First we discuss some basic properties of clustering for the two sets of ensembles and the differences 
between them. Table 3 shows the cluster size (number of individual members) for all three clusters in both 
ECEPS and ALEPS. The clustering algorithm has defined the ordering of clusters in Table 3, i.e. they have 
not been sorted out according to their size. Overall, in terms of this simple statistics, there are more 
differences between ECEPS and ALEPS than similarities. Only in 2 out of the total 32 parameter/synoptic 
case combinations the clustering algorithm yields identical result: for Z700 and RT 500/1000, both in the 
AU2 synoptic case. For both cases, not only the size of ECEPS and ALEPS clusters is identical, but also are 
individual members within each cluster. However, as mentioned above, the resulting ensemble mean fields 
for corresponding clusters may not be necessarily identical, although in our case they are very similar (not 
shown).  

There are several very similar groupings of individual forecasts for ECEPS and ALEPS, differing only 
slightly in cluster size - for example, in AU1 for Z700, T850, wind 850 and RT 1000/700, in SU2 for RT 
1000/500 and in SU1 for RT 1000/700. However, for most combinations in Table 3 the differences in size 
between ECEPS and ALEPS clusters are relatively large. The largest differences in the number of cluster 
members are found for Z500 and ω fields in all four synoptic cases. Fig. 3 illustrates these differences for 
Z500 in the AU1 synoptic case – the shaded areas are the differences between cluster means and ECMWF 
analysis (cluster “errors”). One may argue that there is some similarity between the most populated clusters: 
32 members in ECEPS (Fig. 3 top right) and 24 members in ALEPS (Fig. 3 middle left). The error pattern 
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and amplitude for the second most populated clusters (13 members in ECEPS, Fig. 3 middle right and 20 
members in ALEPS, Fig. 3 top left) look very different. The third ALEPS cluster (7 members, Fig. 3 bottom 
left) shows some similarity with the ECEPS cluster number 2, as does the second ALEPS cluster with the 
third ECEPS clusters (6 members). It is clear from Fig. 3 that similar error patterns between the ECEPS and 
ALEPS clusters arise from identical individual ensemble members being included in both clusters. For 
example, all seven members from the ALEPS third cluster (Fig. 3 bottom left) are included in the second 
ECEPS cluster (with 13 members; Fig. 3 middle right). 

 
Figure 3 The 500-hPa geopotential height clusters for the AU1 synoptic case at T+48 hr for ALEPS (left) and ECEPS 
(right). Contouring interval 4 dam for cluster means (solid black), and 3 dam for errors with respect to ECMWF 
operational analysis (shaded). 
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ECEPS clusters ALEPS clusters 
Parameter Synoptic case 

1 2 3 
C 

1 2 3 

Z500 SU1 22 23 6 18 33 12 6 

 SU2 30 12 9 21 11 21 19 

 AU1 32 13 6 18 20 24 7 

 AU2 16 23 12 20 32 14 5 

Z700 SU1 31 14 6 23 24 21 6 

 SU2 19 20 12 17 17 18 16 

 AU1 26 11 14 24 24 12 15 

 AU2 17 19 15 19 17 19 15 

T850 SU1 19 18 14 16 30 10 11 

 SU2 14 18 19 19 24 18 9 

 AU1 34 10 7 33 34 8 9 

 AU2 19 24 8 23 26 16 9 

Wind 850 SU1 22 22 7 21 27 10 14 

 SU2 23 12 16 15 24 23 4 

 AU1 25 14 12 24 26 14 11 

 AU2 21 18 12 21 26 18 7 

RT 500/1000 SU1 28 11 12 21 32 13 6 

 SU2 21 19 11 19 20 20 11 

 AU1 32 9 10 17 27 21 3 

 AU2 29 16 6 29 29 16 6 

RT 700/1000 SU1 27 11 13 14 28 13 10 

 SU2 31 14 6 18 15 18 18 

 AU1 33 9 9 30 30 9 12 

 AU2 24 19 8 20 20 24 7 

ω500 SU1 24 14 13 22 27 16 8 

 SU2 11 28 12 9 16 21 14 

 AU1 10 30 11 12 18 16 17 

 AU2 18 20 13 14 24 17 10 

ω700 SU1 22 10   18 25 15 11 

 SU2 34 10 7 19 20 21 10 

 AU1 32 8 11 23 12 24 15 

 AU2 19 19 13 10 24 15 12 
Table 3 Cluster size of each cluster (1, 2, 3) for ECEPS and ALEPS. In the shaded middle column is the 
number of common members in both ECEPS and ALEPS from the most populated or the second most 
populated (underlined) clusters. The base clustering time is T+48 hr. 
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The number of common members, i.e. ensemble members residing in both ECEPS and ALEPS most 
populated or second most populated clusters is shown in the shaded middle column in Table 3 (denoted C). 
The highest number of common members, 33, is found for T850 in AU1. Even in this case when ECEPS and 
ALEPS clusters have the highest number of common members, errors in cluster means may not look 
identical or even similar (not shown). Thus, many common members do not necessarily guarantee similarity 
between clusters from the two different populations. It is through dynamical downscaling that physical 
attributes of clustering might be changed. Since for both ECEPS and ALEPS the clustering algorithm is 
applied at the same grid, this example indicates how different results may be reached after dynamical 
downscaling. The lowest number of common members, 9 in Table 3, is found for ω500 in SU2.  

From Table 3, the number of the occurrences when the most populated cluster contains more members than a 
given (arbitrary) threshold could be also found. If such a threshold is set, for example, to 26 members, 
indicating that the most populated cluster contains more than one half of all ensemble members, the result 
yields 15 (out of 32) and 14 occurrences for ECEPS and ALEPS respectively. This implies that in nearly one 
half of all (parameter/synoptic case) combinations from Table 3, the clustering algorithm will sort out all the 
ensemble members into one major cluster and two (much) less populated clusters. The experience from the 
operational forecasting practice at CMHS indicates that clustering results of operational ECMWF EPS 
(based on the ECMWF algorithm) often show inadequate number of clusters for southern Europe. The 
extreme situation is that all ensemble members are grouped into a single cluster. Our results and the 
discussion of Table 3 indicate that possibly no major gain in this respect would be attained with ALEPS - the 
clustering algorithm essentially yields, in a crude statistical sense, similar results for both ECMWF and 
Aladin ensembles.  

The above “skewed” distribution of cluster populations may not be true if a different clustering criterion is 
applied. When the clustering is based on the proportion of explained variance, then the number of clusters 
may vary. If for example the explained variance is set to 50%, for most parameters considered the clustering 
algorithm yields four or more clusters with more “uniform” distribution of cluster populations.   

3.2.2. Most populated clusters  

Table 4 shows the statistics similar to that from Table 2 but for ECEPS and ALEPS most populated clusters. 
Cluster mean deviation with respect to ECMWF operational analysis σc is computed in the same way as 
ensemble mean deviation σe discussed in section 3.1, the only difference being that for σc the summation runs 
over the total number of cluster members. The comparison of the cluster mean deviation σc in Table 4 (the 
two middle columns) with the ensemble mean deviation σe in Table 2 shows that the number of combinations 
when the ECEPS deviation is larger than the ALEPS deviation is reduced from 18 in Table 2 to 14 in 
Table 4. This would essentially imply that, in terms of mean deviation, the relationship between ECEPS and 
ALEPS most populated clusters does not substantially differ from that for ECEPS and ALEPS full 
ensembles. However, σc values are generally lower than σe values irrespective of the model, thus pointing to 
a reduction in mean variation of the most populated cluster with respect to operational analysis when 
compared to mean variation of the full ensemble. Bearing in mind that clusters contain members that are 
much more similar to each other than normally found in an ensemble (i.e. RMS differences among cluster 
members are smaller than among ensemble members), such a reduced variability of clusters when compared 
to full ensembles should be expected. 
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Parameter Synoptic 
case 

Mean absolute difference δc Mean deviation σc Cluster spread Sc 

  ECEPS ALEPS ECEPS ALEPS ECEPS ALEPS 

SU1 1.04 1.03 1.39 1.35 1.05 1.07 

SU2 0.94 0.98 1.30 1.36 0.99 0.94 

AU1 3.05 3.10 3.89 4.04 2.96 2.54 

Z500 (dam) 

AU2 2.06 2.30 2.80 3.32 2.16 2.51 

SU1 0.97 0.91 1.27 1.24 0.99 0.90 

SU2 0.88 0.85 1.12 1.11 0.75 0.75 

AU1 2.18 2.15 2.71 2.68 2.01 1.97 

Z700 (dam) 

AU2 1.59 1.46 2.04 1.93 1.57 1.59 

SU1 1.07 0.99 1.46 1.28 0.93 0.74 

SU2 1.31 1.37 1.73 1.74 0.85 0.82 

AU1 1.54 1.42 2.07 1.92 1.22 1.18 

T850 (º) 

AU2 1.66 1.51 2.18 1.98 1.20 1.19 

SU1 2.57 (2.16) 2.32 3.34 (2.79) 3.01 1.78 (1.68) 1.85 

SU2 2.09 1.99 2.92 2.66 1.87 1.78 

AU1 3.24 3.29 4.37 4.53 2.58 2.93 

Wind 850 
(ms-1) 

AU2 3.98 3.93 5.76 5.58 2.57 2.78 

SU1 1.16 1.24 1.50 1.63 1.07 1.01 

SU2 1.34 1.50 (1.34) 1.96 2.19 (1.82) 1.26 1.23 (1.14) 

AU1 2.26 3.15 2.99 4.46 2.08 2.73 

RT 500/1000 
(dam) 

AU2 2.19 1.99 3.27 2.99 2.60 2.51 

SU1 0.80 0.84 1.06 1.11 0.75 0.64 

SU2 0.97 1.16 (1.19) 1.40 1.49 (1.53) 0.86 0.70 (0.75) 

AU1 1.32 1.16 1.76 1.60 1.14 1.08 

RT 700/1000 
(dam) 

AU2 1.98 1.16 2.85 1.63 1.28 1.00 

SU1 0.18 0.23 0.29 0.38 0.12 0.24 

SU2 0.14 0.18 0.22 0.33 0.13 0.24 

AU1 0.33 0.41 0.52 0.66 0.20 0.47 

ω500 (Pa) 

AU2 0.24 0.25 0.37 0.40 0.13 0.25 

SU1 0.20 0.26 0.31 0.41 0.14 0.26 

SU2 0.16 0.19 0.27 0.33 0.16 0.25 

AU1 0.35 0.42 0.57 0.70 0.25 0.42 

ω700 (Pa) 

AU2 0.25 (0.21) 0.30 0.39 (0.32) 0.47 0.15 (0.17) 0.31 
Table 4  As Table 2 but for ECEPS and ALEPS most populated clusters. Values in parenthesis are for the 
second cluster when two most populated clusters are equal in size (cf. Table 3) 
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For cluster mean absolute difference δc (the first two columns in Table 4) almost the opposite of σc is found. 
When compared with ensemble mean absolute difference σc (Table 2), it is clear that δc values are almost 
always larger than δe values. In other words, irrespective of the model the mean distance between cluster 
members and analysis is larger than the mean distance for the full ensemble.  Such a smaller ensemble mean 
difference is the consequence of the fact that in the full ensemble some members outside the most populated 
cluster are being closer to operational analysis, thereby reducing the overall ensemble departure from 
analysis. Thus, when compared with the full ensemble, the clustering will reduce the mean variability among 
cluster members, but will not guarantee that the mean (cluster) error is also reduced. 

In addition to the above two statistical measures, cluster spread Sc is also included in Table 4 (the last two 
columns). Similar to ensemble spread Se discussed in section 3.1, it is computed as the distance between each 
individual cluster member and the mean of that cluster, and averaged over all cluster members. From Table 4 
it could be seen that in 16 out 32 combinations the ECEPS cluster spread is larger than the ALEPS spread 
(compare the Sc values in the bold typeset in Table 4). A consistently lower spread in ALEPS is found for 
T850 and RT 700/1000 implying that these fields are potentially more predictable with the Aladin RM. Z500 
and RT 500/1000 could be also added to relatively more predictable parameters. For wind at 850 hPa and 
both ω fields the ECEPS spread is lower than that in ALEPS. This clearly indicates that a relatively high 
variability of the ALEPS high-resolution orography (cf. Fig. 1) causes a stronger dispersion of the above 
fields. In addition, in almost all combinations the ALEPS spread for ω is twice as large as the ECEPS spread. 
From Table 4, the effect of seasonal cycle is also clearly seen for all parameters considered - a generally 
larger spread is found in autumn than in summer synoptic cases. The comparison of Sc with Se (see Table 2) 
indicates a reduced spread in most populated clusters when compared with full ensembles. This is consistent 
with the reduction of cluster mean deviation σc in comparison to ensemble mean deviation σe. 

3.2.3. Clustering statistics 

The differences between the global and regional most populated clusters, shown and discussed above, 
rendered by identical clustering algorithm warrant further analysis. In order to quantify these differences in 
more details the following additional calculations were carried out: (a) the mean distance di of the i-th 
regional cluster members from the j-th global cluster mean (centroid) and vice versa, (b) the distance 
between the i-th regional and the j-th global centroids, and (c) the so-called representative members of 
regional and global clusters (see Molteni et al. 2001 for the definition).  

For the i-th regional cluster, the mean absolute distance di (averaged over all cluster members) from the j-th 
global cluster centroid G

jC is computed as  

 1 R G
i k

ki

d F
M

= −∑ jC  

The summation index k runs over all R
kF members of the i-th regional cluster (in total Mi members of the i-th 

cluster). Similarly, the mean distance dj of the j-th global cluster from the i-th regional cluster centroid 
R
iC can also be calculated. If dynamical downscaling does not affect clustering properties, then for the same 

clustering algorithm the mean distance of the i-th regional cluster with respect to the j-th global cluster 
centroid will be the smallest for i = j.  This essentially implies that a pair of global and regional clusters with 
the same index will be the closest when compared to other pairs of clusters for which i .   j•
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For our 32 synoptic case/parameter combinations and the given number of three clusters per population, 
there are in total 96 pairs of regional and global clusters that fulfil the criterion i = j.  In 50 out of these 96 
pairs the mean distance di between the ALEPS clusters and ECEPS centroids G

jC  is the smallest. In other 

words, there are almost as many pairs (46) for which dynamical downscaling causes the distance di to be the 
smallest when .  The best results are found for Z700, where in all 12 pairs for which i = j the distance di 
is the smallest. ω500 and RT 700/1000 follow with 9 and 8 pairs respectively. For wind at 850 hPa the 
distance is smallest for all 6 pairs with the same index in the autumn seasons, but for none in summer. 

Somewhat improved statistics emerges when the distances 

i j•

R G
i i jD C C= −  between ALEPS and ECEPS 

cluster centroids are computed. In this case, in 52 out of 96 pairs the distance Di is the smallest when i = j. 
As in the case of di, the distance Di is the smallest for Z700 in all 12 pairs with identical indices. To 
summarise, this kind of statistics indicates that dynamical downscaling may induce non-negligible 
differences between clusters from global and regional ensembles even if the clustering algorithm was 
identical. The results also demonstrate that the clustering will depend on parameter and/or season considered. 

To support the above findings further, Fig. 4 shows examples of scatter diagrams when all pairs of distances 
di and dj are plotted against each other. For each parameter and season, the distances are normalised by 
ensemble spread in order to obtain comparable values. For three clusters in each population, there are 9 
possible pairs (combinations) of i and j indices; hence 9 symbols for each season. If there were no impact of 
dynamical downscaling on clustering properties, the symbols would be positioned along the diagonal. Thus, 
it could be assumed that the departures from the diagonal measure the impact of dynamical downscaling on 
regional clusters. Three “types” of scatter diagrams can be identified from Fig. 4. For Z500 (Fig. 4a; and for 
both RT 500/1000 and RT 700/1000), the dispersion is relatively large, whereas for Z700 (Fig. 4b; and for 
T850 and wind 850) it is less so. For the latter, there is a tendency of the clusters to group closer to the 
diagonal, in particular in autumn, confirming a possible importance of seasonal cycle on clustering. For both 
ω fields (ω700 in Fig. 4c), the symbols are arranged closely along the line that is rotated relative to the 
diagonal. This “tightness” in ω fields could be partly explained by a relatively larger ensemble spread for 
vertical velocity found in ALEPS than in ECEPS (see Table 2) that has an effect on the normalised distance 
di of the ALEPS clusters from the ECEPS centroids.  

Finally, we briefly compare and discuss cluster representative members for both ALEPS and ECEPS defined 
by following the procedure proposed by Molteni et al. (2001). For the same cluster index, i.e. when i = j, 
only in 27 out of total 96 ALEPS/ECEPS pairs (less than 30%) the representative members in both 
populations are found to be identical. The largest proportion, 9 pairs (out of 12) of all identical members are 
found for Z700, whereas the least number of identical members (1) was found for Z500 and both ω fields - 

consistent with the cluster distance statistics presented above. The distance R G
i i jr R R= − between the 

ALEPS representative member R
iR and the ECEPS representative member G

iR for identical clusters, i.e. when 
i = j, essentially yields the results similar to those for di and Di discussed above - ri was found to be the 
smallest in 46 out of 96 combinations. For Z700, this is (again) true for all possible 12 combinations, 
whereas for Z500 and ω700 this occurs in 2 and 3 cases respectively. 
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Figure 4 Normalised mean distance di of the i-th ALEPS cluster from the j-th ECEPS cluster centroid 

G
jC for a) Z500, b) Z700 and c) ω700. 

The results and discussions in this sub-section indicate that different outcomes are likely when the same 
clustering algorithm is applied to ECEPS and ALEPS. Based on such a consideration, an important 
implication for the dynamical downscaling could be inferred. It might not always be feasible to make a 
selection (or a subset) of the global model members for dynamical downscaling that would be based on the 
global model clustering (although from the computational point of view such a reduction in the number of 
forecasts for downscaling would be desirable). In other words, similarity (or likeness) found among the 
members of a given global model cluster might not be necessarily seen or carried over to the subsequent 
downscaled forecasts. 
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4. Ensemble analysis of synoptic cases 
As mentioned above, three cases out of four downscaled ensembles are studied in more detail and their 
results are compared with ECEPS and against Croatian observation data. In terms of severe weather, the 
fourth synoptic case (AU2) has not affected Croatia and will not be discussed here. As mentioned earlier, 
some other parts of central Europe experienced gale force winds and excessive precipitation. 

4.1. Synoptic cases 

4.1.1. Summer case 1 (SU1): 4-5 July 2003  

The first synoptic case covers the period between 4 and 5 July. For several days the eastern Adriatic coast 
was exposed to south-westerly upper-air wind that was bringing a relatively moist and unstable air from the 
western Mediterranean. At 200 hPa, the jet extended from Italy into the Adriatic and the Balkan Peninsula, 
reaching according to ECMWF analysis 42 ms-1 over the central eastern Adriatic (Dalmatian) hinterland at 
the mid-day on 4 July. In the early hours of 4 July, the two shallow lows, one in the northern and the other in 
the central Adriatic, were detected by ECMWF operational analysis (Fig. 5a). The pressure in both lows was 
below 1011 hPa and the south-easterly surface wind was blowing along the Dalmatian coast. In most places 
2m temperatures were in excess of 25°C from early morning hours. These conditions favoured the 
development of unstable mesoscale convective systems with thunderstorms.  

The 24-hour accumulated precipitation from the Dalmatian rain gauges, for the 24-hour period between 
06UTC 4 July to 06UTC 5 July, indicates the rain totals between 50 and 56 mm (Fig. 5b; only 24-hr 
accumulations larger than 20 mm are shown). The hourly reports from the main climatological stations 
reveal that in fact there were two periods of increased precipitation. In the first period on 4 July, the 
Dalmatian towns Šibenik and Split (marked by open black circle and black square respectively in Fig. 5b) 
were hit by heavy rain between 8 and 10 a.m. local time. In Split more than 30 mm fell in 40 minutes. 12 
hours later a single shallow low of less than 1008 hPa moved into the southern Adriatic with northerly winds 
blowing along much of the Dalmatian coast. In the second period, on 5 July between the midnight and 6 a.m. 
local time, some towns and islands in central Dalmatia were affected by rain of nearly 20 mm in 1 hour.  

Both operational deterministic models predicted some precipitation for central Dalmatia. The ECMWF 
TL511 model (with horizontal resolution of approximately 40 km) predicted between 1 and 5 mm in 12 hr, 
and Aladin between 1 and 10 mm, however shifted farther inland from the place where maximum 
precipitation actually occurred (not shown). For this synoptic case, the initial date was chosen to be 2 July 
2003 at 00UTC, and the target forecast times were T+60 and T+72 hours, i.e. between 12UTC 4 July and 
00UTC 5 July (cf. Table 1). 
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Figure 5 Case SU1: a) ECMWF operational analysis for MSLP and 10 m wind at 06UTC on 4 July 2003, 
and b) 24-hour accumulated precipitation from the Dalmatian rain gauges between 06UTC 4 July 2003 
and 06UTC 5 July 2003. Contours in a) every 1 hPa. In b) only rain gauges with more than 20 mm/24 hr 
are shown. 

4.1.2. Summer case 2 (SU2): 28-29 July 2003 

This typical summer storm case occurred over the continental Croatia. A strong thermal ridge in the lower 
troposphere extended from north Africa into the northern Mediterranean, and a relatively cooler air was 
covering an area that stretched from the north-western Europe to the north of the Alps. A weak diffluent flow 
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formed in the mid-troposphere over the western Balkan Peninsula (Fig. 6a), and moderate MSLP and 
temperature gradients formed between the eastern side of the Alps and the Hungarian Plain (Fig. 6b). The 
prevailing northerly near-surface winds caused some “spillage” of cold, unstable air around the Alps into the 
northern Croatia. During the night 28/29 July, between 20UTC and 4UTC many stations in the northwest 
Croatia reported heavy precipitation with thunder and strong winds (Fig. 6c). In some places precipitation 
prolonged over several hours, in the others it was a relatively short but intense event. In Fig. 6c Zagreb is 
marked by a black diamond and the rain gauge at Kapela has measured 60.9 mm in 24 hours (shown as an 
open square in Fig. 6c). 

 
Figure 6 Case SU2: ECMWF operational analysis at 18UTC on 28 July 2003 for a) 500 hPa 
geopotential height, b) MSLP and 10 m wind, and c) 24-hour accumulated precipitation from the north-
western Croatia rain gauges between 06UTC 28 July 2003 and 06UTC 29 July 2003. Contours in a) 
every 2 dam, in b) every 2 hPa. In c) only rain gauges with more than 20 mm/24 hr are shown. 
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For the same time interval, the ECMWF operational deterministic model generated between 5 and 10 mm of 
rain (not shown). Operational deterministic forecasts Aladin predicted more than 10 mm, however slightly 
displaced to the south of the region of interest. For this case, the initial date for numerical simulations was 
chosen to be 00UTC 26 July 2003, and the target forecast period is between T+66 and T+78, i.e. between 
18UTC 28 July and 06UTC 29 July. 

4.1.3. Autumn case 1 (AU1): 13-15 November 2004 

This was a synoptic situation that occasionally occurs in the eastern Adriatic and its hinterland during the 
cold period of the year. In the period 13-15 November a deep low was moving from north Africa, across 
south Italy into the southern Adriatic, where eventually it became semi-stationary and slowly dissipated over 
the Ionian Sea and the southern Balkans. The gale force winds and heavy precipitation along the Croatian 
coast and islands caused loss of life, considerable damage to agriculture and havoc to the air, road and sea 
ferry traffic. Initially, a strong northerly bora wind (bura in Croatian) was blowing along the northern 
Adriatic coast, and a strong south-easterly wind (jugo) was pounding the coast of the southern Adriatic (Fig. 
7a,b). In the morning of 14 November, the maximum daily wind gust reached 33.5 ms-1 in the northern 
Adriatic town of Senj. Later during the day the automatic weather station at the Island of Krk Bridge 
recorded a 206 kmh-1 wind gust (see Figure 4 at http://klima.hr/priopcenja/bura_2004_e.html, with the 
maximum wind speed of 57 ms-1). During the same morning, bura in Split peaked at 36.1 ms-1. In the 
southern Adriatic, at the Dubrovnik climatological station, jugo was logged at 30.0 ms-1 in the early morning 
of 13 November, and in the afternoon of the following day (14 November) it veered to northerly bura 
reaching 29.6 ms-1. By 00UTC 15 November bura extended and was blowing fiercely along the whole 
eastern Adriatic coast. 

Heavy precipitation was recorded along the southern Adriatic coastal region between 06UTC 13 November 
to 06UTC 14 November (Fig. 7c). In Split (marked by a square in Fig. 7c), 31.7 mm of rain fell in 24 hours - 
between the afternoons of 13 November and 14 November. In Ploče (triangle in Fig. 7c) and Dubrovnik, 
45.5 and 41.1 mm of rain respectively fell in 6 hours, between 07UTC and 13UTC on 14 November. In 24 
hours (18UTC 13 November to 18UTC 14 November) it ultimately amounted to 94.2 and 76.9 mm 
respectively. The maximum precipitation of 123.4 mm in 24 hours (6UTC 13 November to 6UTC 14 
November) has been measured in Gornje Sitno (open diamond in Fig. 7c), and in the same period 87.8 mm 
was recorded in Blato on the island of Korčula (hexagon in Fig. 7c).  

For this synoptic case the operational ECMWF TL511 deterministic model predicted precipitation amounts 
higher than 50 mm/12 hr only further south, at the Montenegrin and Albanian coastal mountains, and no 
precipitation in the northern Adriatic. Similar result has been obtained by operational (deterministic) Aladin 
model (not shown). The initial time for model integrations was set to 00UTC 12 November 2004, and the 
target period is between T+36 and T+72, depending on the area considered. 

http://klima.hr/priopcenja/bura_2004_e.html
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Figure 7 Case AU1: ECMWF operational analysis for MSLP and 10 m wind at a) 12UTC on 13 
November 2004, b) 12UTC 14 November 2004, and c) 24-hour accumulated precipitation from the south 
Croatia rain gauges between 06UTC 13 November 2004 and 06UTC 14 November 2004. Contours in a) 
and b) every 2 hPa. In c) only rain gauges with more than 20 mm/24 hr are shown. 

4.2. Clustering proxy for precipitation 

The clustering described and discussed in section 3 was performed for upper-air parameters. In view of 
severe weather in our synoptic cases, it might be desirable to carry out clustering for those parameters that 
best describe the event itself. Perhaps intuitively one would prefer to base clustering on surface parameters, 
like for example, precipitation amount or the magnitude of the near-surface wind. However, because of the 
discrete nature and incoherent structure of many surface fields the clustering algorithm based on, for 
example, RMS difference between ensemble members may not be a straightforward exercise. In addition, it 
might be difficult to reconcile the small-scale nature of (often orographic) precipitation with large-scale 
features that are normally included in the clustering algorithm over the domain of the size of central Europe 
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and the northern Mediterranean. On the other hand, if upper-air fields are used as the basis for the clustering 
of surface fields, the question arises which parameter (if any) could be the best-defined proxy for a given 
surface field? Since no unambiguous relationship between surface and upper-air fields exists, various testing 
has been performed and discussed below. 

Before discussing the results, it is important to note that the clustering time for precipitation proxies is based 
on the hindsight knowledge of each synoptic case, i.e. we already knew the time intervals when severe 
weather events (heavy precipitation, gale force winds) occurred. This, of course, would not be possible in an 
operational forecasting environment. However, our aim is to find out the best possible estimates for the 
clustering of parameters that constitute severe weather.  

4.2.1. Case SU1 

For the SU1 case, the most intense precipitation occurred within the forecasting period between T+54 and 
T+66 hours (cf. Fig. 5). Thus, the proxy clustering for the 12-hr accumulated precipitation is centred on the 
T+60 forecast time, i.e. at 12UTC 4 July 2003. For the ECEPS clustering based on different upper-air 
parameters, the most populated clusters yield too little 12-hour precipitation in the area of the central eastern 
Adriatic (Fig. 8 left panels). Here, for reason of space only selected parameters are shown. Somewhat 
increased precipitation amounts are found farther north, in the north Adriatic region, indicating a 
displacement of the precipitation maximum in the ECMWF EPS model when compared with observations. 
For the central eastern Adriatic almost no difference is found among various parameters. The next 12-hour 
accumulations (between T+60 and T+72) show no improvement, i.e. the precipitation maxima stay more or 
less in the same position.  

For ALEPS, the same clustering procedure yields an increased precipitation rate relative to ECEPS.  When 
Fig. 8 right-hand panels are compared with Fig. 5b, it could be concluded that such an increase in the ALEPS 
precipitation means an improvement as well. For RT 700/1000 (Fig. 8 bottom right), the 30-mm contour is 
seen in the box bounded by 43º–44°N and by 17º–18°E. This maximum is only slightly shifted eastward 
relative to observations shown in Fig. 5b. The clustering based on the other parameters also indicates 
increased precipitation in the same area but with somewhat reduced amplitude. For some parameters the 
maximum precipitation is found further north (e.g. ω500), similar to ECEPS. In comparison with ECEPS, the 
precipitation in ALEPS is generally more dispersed over the central part of the integration domain.  

It could be argued that the increased precipitation in the southern Dalmatian hinterland in ALEPS, and not 
seen in ECEPS, is due to the impact of a better-resolved Aladin orography. From Fig. 1, it is clear that, in the 
area considered, the orography difference between the Aladin and the ECMWF EPS models is more than 600 
m in places. For this particular synoptic case, in addition to higher mountains in ALEPS, the orientation of 
the Dinaric Alps (the main mountain chain in the eastern Adriatic hinterland) must have also played a crucial 
role to increasing precipitation. As discussed above (section 4.1), in early July 2003 the eastern Adriatic 
coast was exposed to a strong and moist south-westerly flow. When hitting the orographic obstacle that runs 
from the northwest to southeast, i.e. perpendicular to the direction of the flow, such a flow is bound to 
generate some precipitation. Similar increase in the ALEPS precipitation is seen over central Italy where the 
Apennines represented in Aladin are higher for more than 1000 m than in ECMWF EPS and have identical 
orientation as the Dinaric Alps (cf. Fig. 1). 
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Figure 8 The 12-hour accumulated precipitation between T+54 and T+66 in most populated clusters in 
the SU1 case and various clustering base parameters for ECEPS (left) and ALEPS (right). Contouring 1, 
5, 10, 20, … mm/12 hr. 
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It is important to emphasise that the results shown in Fig. 8 and discussed above are related to the most 
populated clusters. Fig. 9 shows that, for the same clustering base parameters some other, less populated 
clusters have attained even better results. For example, for ECEPS, the clustering based on RT 1000/500 has 
brought the 5 mm contour to the region of central Dalmatia (Split) – an increase when compared with Fig. 8 
left panels. Likewise, for ALEPS, the clustering based on ω500 indicates rainfall of more than 50 mm in 12 
hours. Of course, such results might be relevant only in the hindsight analysis. In the real-time forecasting 
practice less populated clusters would only serve as an indication of a possible alternative development, i.e. 
they would quantify forecast uncertainty. In the case of ALEPS, the cluster number 2 in Fig. 9b contained 10 
members, whereas the most populated cluster contained 32 members. Thus, the development that was closest 
to the observed precipitation rates was predicted by about 20% of ensemble members, i.e. by a non-
negligible margin.  

From the above discussion a question arises what upper-air parameter in this synoptic case has served as the 
best clustering proxy for precipitation. According to Fig. 8 no clear-cut answer could be reached. Some 
parameters yielded a little more accurate precipitation amount than the others, but overall no dramatic 
differences among various parameters are found. On the other hand, from Fig. 9b ω500 clearly represents a 
relatively good clustering base for describing well the precipitation maxima. 

4.2.2. Case SU2 

Generally, in the most populated ECEPS clusters there is much less precipitation over the northwest Croatia 
than it was actually observed. Fig. 10a shows that for the clustering based on Z500 only between 1 and 5 mm 
of precipitation in 12 hours was generated in the box bounded by 45º–46ºN and 16º–17ºE (cf. Fig. 6c). 
Similar result also holds for ω500, but for other parameters very little or almost no precipitation has 
accumulated between T+66 and T+78. Interestingly, in the same time interval the then operational ECMWF 
TL511 (deterministic) model generated between 5 and 10 mm of rain (not shown), indicating that an 
improved horizontal resolution might have helped in better representing relatively small spatial synoptic 
scales. In almost all clusters, a somewhat increased precipitation (5-10 mm) occurred to the northwest, in the 
neighbouring Slovenia. The ALEPS most populated clusters have not performed better than their ECEPS 
counterparts. Fig. 10b shows that in the box considered no more than 5 mm of precipitation accumulated 
over 12 hours for the clustering based on RT 500/1000.  

In both ensembles, an increased precipitation is located in the northeast Italy, south Austria and throughout 
Slovenia. Indeed, heavy showers and thunder have been observed in these areas (not shown) and in both 
ensembles the advance of a relatively cold air from the northwest has been halted there. Thus, as far as the 
north-western part of Croatia was concerned, for both ensemble systems this seems to be a difficult case to 
predict correctly. The additional clustering for other base times and parameters was performed and various 
forecast time intervals were analysed. However, this brought no improvement to either ensemble. For this 
particular case both operational deterministic models predicted more accurately the precipitation amounts 
than their ensemble counterparts (see the discussion in section 4.1.2).  
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Figure 9 The 12-hour accumulated precipitation between T+54 and T+66 hr in the SU1 case for a) 
ECEPS cluster no. 3 for the RT 500/1000 clustering base, and for b) ALEPS cluster no. 2 for the ω500 
clustering base. Contouring is the same as in Fig. 8. 
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Figure 10 The 12-hour accumulated precipitation between T+66 and T+78 in most populated clusters of 
the SU2 synoptic case for a) ECEPS for the Z500 clustering base and b) ALEPS for the RT 500/1000 
clustering base. Contouring as in Fig. 8. 

4.2.3. Case AU1 

The bulk of precipitation in the southern Adriatic fell between the evening of 13 November and the early 
afternoon hours on 14 November. For this case, the clustering proxies for the 12-hour accumulated 
precipitation are centred on 00UTC 14 November, i.e. at the T+48 forecast time. All of most populated 
ECEPS clusters based on different upper-air parameters, generate in the south-eastern Adriatic more than 20 
mm of precipitation per 12 hours, and in the Dubrovnik area more than 30 mm (see Fig. 11a for the Z500 
clustering base). Less populated clusters also yielded similar amounts. Thus, ECEPS was relatively 
successful in this synoptic situation and a high degree of consensus among individual members was attained. 
Moreover, a gradual reduction in precipitation amounts towards the northern Adriatic was also correctly 
predicted: for example, in the northern Adriatic town of Senj (marked as SE in Fig.11) the 12-hour 
accumulation centred at 00UTC 14 November was only 7 mm.  
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The ALEPS most populated clusters indicate correctly more than 30 mm/12hr precipitation in the Ploče area 
and more than 50 mm/12hr in the Dubrovnik area respectively (marked as PL and DU in Fig. 11; cf. section 
4.1.3). This is clearly seen in Fig. 11b for the ω500 clustering base. The largest precipitation amounts, 
similar to ECEPS, are found further south down the eastern Adriatic coast. This maximum in precipitation is 
induced when a strong and moist southerly wind enters the southern Adriatic (Fig. 7b) and impinges the 
highest mountains of the Balkan Peninsula (more than 1800 m in the Aladin model, cf. Fig. 1a). It could be 
concluded that the ALEPS most populated clusters improved the detailed distribution of high precipitation 
amounts in the southern Adriatic relative to ECEPS, although the performance of the latter was very good 
indeed. When compared to observations, both ECEPS and ALEPS performed better than ECMWF and 
Aladin deterministic models (see the discussion in section 4.1.3 above). 

 
Figure 11 The 12-hour accumulated precipitation between T+42 and T+54 in most populated clusters of 
the AU1 synoptic case for a) ECEPS for the Z500 clustering base and b) ALEPS for the ω500 clustering 
base. Contouring as in Fig. 8. 
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For this synoptic case, there is almost no difference among various parameters used as the clustering base for 
precipitation. This is essentially in agreement with the results for precipitation proxies discussed above for 
the SU1 case. The fact that no major differences in precipitation amounts have been obtained for the 
clustering based on various parameters could be useful in an operational forecasting practice, since it would 
eliminate redundant results.  

4.3. Probabilities 

To complement the results of clustering proxies for precipitation, in this section precipitation probabilities 
for both ECEPS and ALEPS are analysed. For precipitation, we focus to 12-hour accumulations. In general, 
the 12-hour (and also 24-hour) accumulations were found to yield higher probabilities than short-period 
accumulations. A possible explanation could be that (global) models are unable to accurately pinpoint severe 
weather events - they might be displaced either in space or/and in time. Thus, accumulations over a longer 
period of time would compensate for model spatial and temporal inaccuracies. In addition to precipitation, 
probabilities for near-surface wind are also considered, as well as one (non-standard) application of forecast 
probabilities to the diagnostics based on isentropic analysis developed at CMHS. Most results on 
probabilities shown and discussed below are defined from the whole ensemble; however, we also briefly 
discuss precipitation probabilities from clusters that were based on precipitation proxies. In the following, 
probabilities for only two synoptic cases are discussed because, as shown by cluster analysis above, for the 
SU2 case both models performed relatively poorly.  

4.3.1. Case SU1 

For 10-mm and 15-mm thresholds, the 12-hour precipitation probabilities in ALEPS (Fig. 12 middle panels) 
are generally higher than probabilities in ECEPS (Fig. 12 top panels). The highest probabilities in ALEPS, 
located over the mountains of the northern Adriatic and reaching more than 95%, coincide with highest 
probabilities of ECEPS which extend only a little above 35%. Though one could argue that both models 
misplaced the largest precipitation amounts (cf. section 4.1 (i)), this is not entirely true. Namely, in the 
region of the northern Adriatic an increased precipitation has also been observed, however, not as much as 
farther south in central Dalmatia (not shown). On the other hand, though the positioning of the 65% contour 
in ALEPS over the mountains of the southern Adriatic hinterland does not coincide precisely with the region 
of the heaviest precipitation (cf. Fig. 5b), it is nevertheless quite close to where it actually occurred.  

This case demonstrates the modelling difficulty to capture the details of a heavy precipitation event that was 
rather confined in time and space. In terms of probabilities, the emphasis in the global model ensemble was 
on a less important precipitation event – or from pessimistic point of view, one could argue that the global 
model missed out the event of interest. On the other hand, though the limited area model gave some 
indications of the event close to the region where it actually occurred, it has not distinguished it with 
sufficient details. 

Precipitation probabilities discussed above were derived from the whole Aladin ensemble. In section 4.2 it 
has been demonstrated that some upper-air parameters could be used as the basis for the clustering of 
precipitation. In the bottom panels of Fig. 12, the 12-hour precipitation probabilities from ALEPS most 
populated clusters for the two parameters chosen as the precipitation proxies (cf. Fig. 8 right) are shown. In 
both Fig. 12 bottom panels, an increased probability of precipitation greater than the 15-mm threshold is seen  
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Figure 12 Probability of the 12-hour accumulated precipitation (between T+54 and T+66) in the SU1 
case for ECEPS (top) and ALEPS (middle) for the thresholds 10 mm/12 hr (left) and 15 mm/12 hr (right). 
Same probability for ALEPS and the 15-mm threshold for most populated clusters based on e) RT 
500/1000, and f) ω500. Contouring at 5, 35, 65 and 95%. 
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in the southern Adriatic hinterland, similar to Fig. 12 middle panels. Whilst a correct location of the largest 
observed precipitation amounts in Fig. 12e,f still remains somewhat elusive, i.e. it is similar to that for the 
full ensemble (Fig. 13c,d), it nevertheless confirms that both parameters – in this case RT 500/1000 and 
ω500 – could be used as precipitation proxies. For ECEPS with 15-mm threshold, no parameter acting as a 
proxy for precipitation in the most populated clusters has produced any significant precipitation probability 
in the region of interest (not shown). 

Probabilities of meteorological parameters shown and discussed above have been computed directly from 
model output. However, other applications based on forecast probabilities might prove as being useful 
prediction tools. In the CMHS forecasting practice the High Resolution Isentropic Diagnosis (HRID) model 
has been used for a long time to primarily diagnose whether the atmosphere over predefined localities is 
potentially unstable (see, for example, Ivančan-Picek et al. 2003). For a given location, various surface and 
upper-air parameters are computed from the Aladin model output and could be displayed at regular time 
intervals in the form of the height/time cross sections. Here, the capability of HRID has been extended to 
calculate probabilities of the occurrence for a given event and we demonstrate its potential in a forecast 
ensemble. 

The SU1 storm that occurred in the early hours of 4 July was associated with an increased upper-air wind 
(see the discussion in the section 4.1 (i)). In the period from 3 July to 5 July, the operational (deterministic) 
HRID for Split (43.51°N, 16.55°E) has predicted an increase of the upper-air wind above 6 km to the 
strength of the jet stream (Fig. 13a). The wind peaked at more than 44 ms-1 in the slab between 9 and 10 km 
at 00UTC 4 July. The ALEPS indicates that probability of the jet stream occurrence (i.e. the wind being 
stronger than 30 ms-1) between 6 and 7 km is about or slightly above 50%, and more than 90% between 8.5 
and 10 km (Fig. 13b). This is essentially in agreement with the ECMWF operational analysis for 12UTC 4 
July which indicates that the south-westerly wind was gradually increasing from less than 30 ms-1 at 400 
hPa to nearly 40 ms-1 at 200 hPa (not shown). Thus, it could be argued that the probabilistic HRID is closer 
to verifying analysis, whereas its deterministic counterpart overestimates the wind magnitude in the upper 
portion of the time cross-section in Fig. 13.  

The bottom panels of Fig. 13 show the distribution and probabilities of relative humidity in both 
deterministic and probabilistic HRID. Clearly, in both bottom panels an increase in relative humidity could 
be seen, at and around the time of heavy precipitation. When compared with the hourly precipitation data (cf. 
section 4.1 (i)), a higher probability of relative humidity greater than 60% shortly before 12UTC 4 July 
(more than 80%) is fairly close to the precipitation observations. It has to be pointed out, however, that both 
deterministic and probabilistic diagnostics have not captured entirely correctly the actual precipitation rate at 
the given location.  

 



 Dynamical downscaling of ECMWF EPS forecasts …

 
 

 
32 Technical memorandum No.507

 
Figure 13 Height/time cross-sections for deterministic HRID (left) and probabilistic HRID (right) at Split 
(43.51°N, 16.55°E) for wind magnitude (top) and relative humidity greater than 60% (bottom). 
Contouring in left panels every 2 ms-1 for wind and every 10% for relative humidity; contouring for 
probabilities in right panels every 10%. 

4.3.2. Case AU1 

Since in this case large amounts of precipitation were recorded in a relatively short period of time (cf. 
Section 4.1.3), we focus to probabilities of precipitation exceeding 15 mm in 12 hours. For the forecast 
interval between T+42 and T+54, both ECEPS and ALEPS correctly yielded more than 65% probability of 
rainfall at the Croatian southern Adriatic coast (Fig. 14 top panels). Apart from some details in the structure 
of probability field over the area of interest, no obvious advantage on the part of ALEPS could be seen.  

High probability of heavy precipitation along the southern Adriatic coast was maintained into the successive 
12-hour interval, between T+48 and T+60 (Fig. 14 bottom panels). In both models, the 65%-contour extends 
even further west over the Pelješac peninsula, i.e. in the Ploče region where the heaviest precipitation was 
recorded. However, in the Adriatic hinterland (Bosnia and Herzegovina), where according to synoptic 
stations heavy snow and rainfall were falling around mid-day and in early afternoon of 14 November, 
ALEPS indicates probabilities of less than 5%. This is also true for the 10-mm and 5-mm thresholds. It 
seems that most of precipitation in ALEPS deposited in a relatively narrow Adriatic coastal strip where the 
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high mountains prevail (see Fig. 1). It might be possible that such an extensive precipitation at a high 
orographic obstacle in ALEPS is linked to some deficiency in model’s parameterisations. In ECEPS (Fig. 
14c), on the other hand, a higher probability of precipitation over the western Balkan Peninsula indicates that 
moist air in the southerly flow penetrated further inland than in ALEPS.  

 
Figure 14 Probability for precipitation exceeding the threshold 15 mm/12 hr accumulated between T+42 
and T+54 (top) and between T+48 and T+60 (bottom) in the AU1 synoptic case for ECEPS (left) and 
ALEPS (right). Contouring at 5, 35, 65 and 95%. 

In section 4.1.3 it has been discussed that, in addition to heavy precipitation, strong winds at the Croatian 
Adriatic were also associated with this synoptic case. The gale force bura (with wind speed of more than 
20 ms-1) in the northern Adriatic has been captured by ALEPS with probability exceeding 95% (Fig. 15d), 
i.e. nearly all ensemble members predicted such a severe event! In contrast, further south in the central 
Adriatic (Split), even a somewhat stronger observed wind has been predicted less successfully. Nevertheless, 
there is some indication of a relatively high wind speed there: from Fig. 15b it could be inferred that 
probability of wind exceeding 15 ms-1 is about 65%. The ECEPS has not performed so well in predicting 
these small-scale features of severe wind at the eastern Adriatic coast. An increased probability is found to 
the southwest over the open sea, further away from the place where the actual bura blows. Further south, in 
the Dubrovnik area, neither model captured strong winds, almost equally strong to those in the northern and 
central Adriatic. In ALEPS there is some hint of increased winds (Fig. 15b), however, it is displaced away 
from the coast, between 42° and 43°N. 
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Figure 15 Probabilities for 10 m wind exceeding 15 ms-1 (top) and exceeding 20 ms-1 (bottom) in the 
AU1 synoptic case at T+54 for ECEPS (left) and ALEPS (right). Contouring at 5, 35, 65 and 95%. 

5. Summary and conclusions 
Synoptic cases of severe weather in various parts of Croatia are studied by the dynamically downscaling 
ECMWF global model ensemble forecasts. The four 5-day global forecasts were generated using the 
ECMWF 51-member EPS (ECEPS). The 3-hourly ECEPS outputs were used to force the Aladin limited area 
model over the central Europe and the northern Mediterranean domain, thus creating downscaled ensembles 
(ALEPS) with 51 members each. The ECEPS was run at the TL255 spectral resolution (roughly 
corresponding to 80 km) with 40 levels in the vertical, and ALEPS was run at the 12.2-km regular grid with 
37 vertical levels. The outputs from the both, ECEPS and ALEPS, ensembles were manipulated in the same 
way in order to determine the impact of dynamical downscaling and possible gains that could be attained for 
studying synoptic cases of severe weather.  

The two measures of modelling error with respect to ECMWF operational analysis (mean absolute difference 
and mean deviation), defined over the downscaling domain, indicate that the errors in ECEPS and ALEPS 
upper-air fields are comparable. However, when the ω field is excluded from the consideration, the overall 
picture changes in favour of ALEPS, possibly indicating that dynamical downscaling generally reduces the 
modelling errors in the free atmosphere. The spatial distribution of model errors indicates that largest 
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differences between the two models are not necessarily associated with relatively large orographic 
differences. 

When the same clustering algorithm is applied to both sets of ensembles, the resulting difference in the size 
of clusters appears to be relatively large. Thus, it seems that smaller spatial scales as defined in ALEPS, 
affect ensemble properties and cause different clustering results, even if the clusters are made of the same 
members. This is confirmed by examples whereby the error fields, derived from the clusters containing the 
highest number of common members between ECEPS and ALEPS, look very different. It seems therefore 
that in the case of dynamical downscaling many common members do not necessarily guarantee similarity 
between clusters from the two different populations. 

When the statistics applied to full ensembles is extended to most populated clusters, it emerges that the 
clustering reduces the mean variability among cluster members in comparison to the variability of the full 
ensemble, but will not necessarily reduce the mean cluster error in comparison to mean ensemble error. For 
850-hPa wind and both (500 and 700 hPa) ω fields, spread of full ensembles and spread of most populated 
clusters is consistently larger in ALEPS than in ECEPS. Since these fields are generally more susceptible to 
orographic influences than the other upper-air fields considered, such a result indicates that a better resolved 
small-scale orography may strongly affect the dispersion among ensemble (cluster) members in ALEPS. 

A detailed analysis of various distances among clusters, cluster centroids and representative members reveal 
that, in approximately one-half of all (parameter/season) combinations considered, dynamical downscaling 
have caused non-negligible differences between global and regional clusters even when identical clustering 
algorithm was applied. This implies that the properties identified via representative members in global 
clusters may not always be extended to regional clusters. In other words, what is found to be representative 
in global clusters is not necessarily representative in downscaled clusters. Because of such (potential) 
dissimilarities between global and regional clusters, a careful consideration must be taken when choosing the 
global representative members for dynamical downscaling, in particular if they serve as proxies for fields 
that are highly dependent on small-scale orographic features (like for example precipitation discussed in 
Molteni et al 2001 and Marsigli et al 2001). 

Three cases of typical severe weather (or storms) that occasionally occur over the maritime and continental 
parts of Croatia have been discussed in more details. Overall, the comparison of the results from these 
synoptic cases yields by no means a unique and unequivocal advantage of the higher resolution model. 
Whereas in one case the downscaling brings an improvement in the prediction of local rainfall, in the second 
case almost no improvement is seen, i.e. both global and regional models misplaced the precipitation 
maximum. In the third synoptic case, the prediction of heavy precipitation by global model was already very 
good, so that the regional model could add only a little to improve the global model forecast. Our synoptic 
analysis indicates that a relative success of downscaling could be linked to (at least) the following two 
factors: a better resolved orography in the regional model, and the spatial/temporal extension (scale) of the 
synoptic event considered.  

In the first synoptic case, a higher orography in the Aladin model acted as an enhanced obstacle to the 
southwesterly flow over the (perpendicularly oriented) mountains of the eastern Adriatic hinterland. The 
higher Aladin orography excited a higher precipitation discharge, which was relatively closer to observations 
than in the global model. In the second case, severe weather was defined over very small spatial scales over 
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an area of Croatia with no major orographic differences between the global and regional models. Thus, the 
difference in orography could not play any significant role in the downscaling of this synoptic case. In 
addition, the event’s small spatial and time scales possibly conveyed insufficient pieces of information about 
severe weather in the global model. The third synoptic case differed from the first and, in particular, from the 
second case in terms of the spatial extent and intensity of disturbance (winds and precipitation). It covered a 
much larger portion of the Adriatic Sea and the Balkan Peninsula than the other cases, which is the reason 
why it has been captured relatively successfully by the global model. However, in this synoptic case the 
downscaled near-surface winds and local precipitation compare much more favourably with observations 
than those from the GCM. 

Overall, our results indicate that the more detailed and somewhat improved spatial distribution of 
precipitation in ALEPS could be related to a better representation of high orography in the limited area 
model. Based on the analysis of the eight different upper-air parameters, no definite conclusion could be 
made on what parameter constitutes the best proxy for the clustering of precipitation. It has been also 
demonstrated that, when compared with the precipitation observations, most populated clusters do not 
always attain correct distribution and amount of local precipitation. Such a result indicates a possible 
deleterious influence of models’ systematic errors on clustering. As a complement to clustering, probabilities 
in ensemble forecasts have also been discussed. Though somewhat improved, in terms of probabilistic 
diagnostics the results from limited area model bring no clear-cut benefit over the global model.  

Although the error and spread statistics for the full ensembles and most populated clusters indicate what 
might be an overall impact of dynamical downscaling, when it comes to synoptic case studies it is difficult to 
generalise some of the results. It has been demonstrated that limited area ensembles in some cases improve 
the forecast accuracy by bringing more details in the field of interest (precipitation, wind). On the other hand, 
these details in other cases do not automatically signify an improvement in the quality of ensemble forecasts. 
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