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ABSTRACT

This paper describes the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and its implementa-
tion on the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model at the University
of Maryland. Numerical results are shown for both simulated observations and observations of the real atmosphere. The
role of flow-dependent information in data assimilation is discussed based on the results of the numerical experiments.
Preliminary assimilation results with AMSU-A radiance observations are also presented.

1 Introduction

The informal“Weather and Chaos”project of the University of Maryland1 was launched by Eugenia Kalnay
and Jim Yorke in 2000. Their goal was to form an interdisciplinary group of numerical weather prediction and
dynamical systems theory experts to conduct research that would lead to a better understanding of the behavior
of high-dimensional spatio-temporally chaotic systems, such as the atmosphere, and to improved techniques
for numerical weather prediction. A fundamental product of this collaborative research effort is the Local
Ensemble Transform Kalman Filter (LETKF) data assimilation algorithm (Hunt et al., 2007, Ott et al. 2004).
In this paper, we focus on results obtained with an implementation of the LETKF on a reduced (T62L28)
resolution version of NCEP GFS model.

In section 2, we summarize the most important milestones in the development of the LETKF and describe its
current implementation on the NCEP GFS model. In section 3, we assess the performance of this particular
implementation, assimilating a set of conventional (non-radiance) observations of the atmosphere and discuss
the implications of the results on the importance of capturing flow dependent aspects of the analysis and forecast
error statistics. In section 4, we present preliminary assimilation results for the case when AMSU-A radiance
observations are added to the observational data set. In section 5, we offer some concluding remarks.

1Further information on this project, including copies of our submitted, accepted and already published papers, can be found at
http:/www.weatherchaos.umd.edu
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2 The LETKF and its implementation on the NCEP GFS model

2.1 Ensemble based Kalman filtering

Ensemble based Kalman filters estimate the flow dependent background statex̄b(t) and the flow dependent
background error covariance matrixPb(t) based on an ensemblexb(i)(t), i = 1,2, . . . ,k of model forecast tra-
jectories for the∆t long analysis time window(ta−∆t/2≤ t ≤ ta +∆t/2):

x̄b(t) = k−1
k

∑
i=1

xb(i)(t), (1)

Pb(t) = (k−1)−1
k

∑
i=1

(
xb(i)(t)− x̄b(t)

)(
xb(i)(t)− x̄b(t)

)T
. (2)

An ensemble based Kalman filter calculates ak-member ensemble of analyses,xa(i), i = 1,2, . . . ,k, based on
the background information provided by Equations (1) and (2) and the observational information encapsulated
in the observation operatorH(x), the observation error covariance matrixR and the vector of observationsyo.
The analysis ensemble provides an analysis mean

x̄a = k−1
k

∑
i=1

xa(i), (3)

which estimates the atmospheric state at timeta, and an estimate of the analysis error covariance matrix

Pa = (k−1)−1
k

∑
i=1

(xa(i)− x̄a)(xa(i)− x̄a)T , (4)

which represents the uncertainty in the state estimate provided by the ensemble mean analysis. The analysis
mean and error covariance matrix are determined by equations similar to those of a classical extended Kalman
filter (e.g., Jazwinski 1970). For example, ifH(x) is a linear mapping represented by the matrixH and all
observations occur at the analysis time, then one can write

x̄a = x̄b(ta)+K
(
yo−Hx̄b(ta)

)
(5)

and
Pa = (I −KH )Pb(ta), (6)

where the Kalman gain matrixK is defined by

K = Pb(ta)HT(
HPb(ta)HT +R

)−1
. (7)

(Notice thatPa does not depend on the observationsyo.) The ensemble mean̄xa can be used as the initial
condition of a deterministic forecast started atta, while the analysis ensemblexa(i), i = 1,2, . . . ,k provides
the initial conditions for the model integrations that produce the background forecast trajectories for the next
analysis time window. In this statistical model the estimated background and analysis error statistics are fully
flow dependent, since

• the ensemble of background forecast trajectories provides flow-dependent information within the analysis
time window and

• the analysis ensemble provides the information needed to propagate the flow-dependent information to
the next analysis time window.
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2.2 The challenge

Although ensemble-based Kalman Filter data assimilation schemes were proposed as early as 1994 (Evensen
1994; Burgers et al. 1998; Houtekamer and Mitchell 1998), when the development of the LETKF started in
2000, it was unclear whether an ensemble based Kalman filter could ever become a viable alternative to the
variational techniques in an operational numerical weather prediction environment. There were three major
concerns:

• The largest computationally affordable ensemble size would be too small compared to the degrees of
freedom in the background uncertainties for a model that has hundreds of millions of state variables, i.e.,
the ensemble based estimate of the background error covariance matrix would be rank deficient.

• The linear algebraic calculations to obtain the analysis (ensemble) would be computationally too expen-
sive.

• The severity of model errors would make a stable cycling of the Kalman filter impossible.

In the last six years, several research groups have made significant progress with designing efficient imple-
mentations of ensemble-based Kalman filters, while model errors have been found a less serious obstacle than
expected originally. We are aware of four successful attempts at assimilating observations of the real atmo-
sphere with an implementations of an ensemble based Kalman filter (Houtekamer et al. 2005; Whitaker et al.
2004 and 2007; Szunyogh et al. 2007, Miyoshi and Sato 2007). Several successful implementations on limited
area models, including the quasi-operational University of Washington Real-Time Ensemble Kalman Filter2

project led by Greg Hakim, have also been reported.

The LETKF addresses the issues of potential rank deficiency and computational efficiency by a unique localiza-
tion strategy that allows for an efficient implementation on a massively parallel computer. The two key features
of this localization strategy are that

• the analysis is obtained independently for each model grid point, or more precisely, for each state vari-
able, which makes processing the different grid points (state variables) in parallel on different processors
possible and

• all observations that are thought to have useful information about the atmospheric state at a given grid
point (or about a given state variable) are assimilated simultaneously.

2.3 Brief history of the LETKF

The idea of preparing an analysis grid point by grid point using flow-dependent information about the fastest
growing background errors was first outlined by Kalnay and Toth (1994). This concept was turned into a math-
ematical algorithm, called the Local Ensemble Kalman Filter (LEKF), in a series of paper by Ott et al. (2002,
2004). These papers focused on investigating the conditions necessary to ensure that the analysis obtained grid
point by grid point resulted in a smooth global analysis field. Here, we highlight only one of these conditions,
which has important practical consequences: the local regions have to be sufficiently large to ensure that most
of the observations assimilated at a given grid point are also assimilated at the neighboring grid points. Hunt
et al. (2004) introduced a 4-dimensional formulation of the LEKF, replacingx̄b(ta) andP̄b(ta) with x̄b(t) and
P̄b(t), (ta−∆t/2≤ t ≤ ta +∆t/2). Finally, Hunt et al. (2007) introduced two important improvements into the
LEKF:

2Real-time products from this project can be found at http://www.atmos.washington.edu/ enkf/.
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• a computationally more efficient algorithm to carry out the linear algebraic calculations for each grid
point and

• the flexibility to vary the size of the local regions for observations of different types; this flexibility is
necessary for the simultaneous assimilation of conventional (in situ) measurements and satellite radiance
observations.

The name of the algorithm was also changed from LEKF to LETKF to acknowledge tha similarity between the
mathematical algorithms for a local region in the LETKF and for the global domain in the Ensemble Transform
Kalman Filter (ETKF) of Bishop et al. (2001).

2.4 Square-root filters vs. perturbed observation schemes

The LETKF belongs to the family ofsquare-root filter algorithms(Tippett et al., 2003). Square-root filters
were introduced independently by Bishop et al. (2001), Anderson (2001), Whitaker and Hamill (2002) and Ott
et al. (2002) . These schemes calculatexa(i), i = 1,2, . . . ,k,

• first determining the analysis error covariance matrixPa based on Equation (6)

• then generatingxa(i), i = 1,2, . . . ,k so that Equation (4) is satisfied.

In contrast, perturbed-observation schemes (e.g., Burgers et al. 1998; Houtekamer and Mitchell 1998) do
not explicitly determinePa. Instead, they preparek independent analyses assimilatingk sets of observations
that are obtained by perturbing the observationsyo by k independently generated sets of observational noise.
The observational noise is a random variable with zero mean and covariance matrixR. As k increases, the
random noise provides and increasingly more accurate representation ofR. For a small ensemble, however, the
representation of the contribution ofR to Pa is affected by sampling errors, a problem that does not affect the
square-root filters. Thus, a squre-root filter provides a more accurate estimate ofPa, which, in practice, allows
for the use of a smaller ensemble. This effect is best illustrated by Whitaker and Hamill (2002).

Square-root filters are sometimes calleddeterministic filters, while the perturbed-observation schemes are
sometimes calledprobabilistic filters. This terminology can be misleading, since both types of schemes treat the
error components as probabilistic variables and use the model to deterministically propagate the error statistics.

2.5 Simultaneous vs. serial assimilation of the observations

Obtaining the analysis grid point by grid point, as we do in the LETKF, has been considered computationally
less efficient than assimilating the observations serially (Evensen 2006). Serial schemes update the state esti-
mate at all grid points where the given observation can provide some information about the state. However,
when implemented on a parallel computer, the LETKF is significantly more efficient than a serial scheme. For
instance, Whitaker et al. (2007) found that, for the model and observational data set considered in their paper
and in Szunyogh et al. (2007), the serial scheme was nearly an order of magnitude more expensive than the
LETKF in terms of computational wall clock time. For completeness, it should be added, that this advantage
may diminish, as also demonstrated by Whitaker et al. (2007), when there is significant redundancy between
observations. In that case, the serial scheme allows for an efficient data thinning procedure that eliminates a
large portion of the observations without compromising the accuracy of the analyses.
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2.6 Implementation of the LETKF on the NCEP GFS model

In what follows, we explain how the LETKF algorithm of Hunt et al (2007) is implemented on the NCEP
GFS. The analysis calculations are carried out in model grid space. Since the NCEP GFS model is a spectral-
transform model, performing the grid space calculations requires that the members of the background ensemble
first be transformed from spectral to grid space. Once the analysis step is completed, the analysis ensemble is
transformed back from grid to spectral space. The components of the state vectorx in our description of the
LETKF algorithm are the model grid point variables.

Following the convention at NCEP, we prepare analyses with six-hour frequency at 0000UTC, 0600UTC,
1200UTC, and 1800UTC, using observations from a 6-hour window centered at the analysis time. The back-
ground trajectories are obtained by integrating each ensemble member for 9 hours starting from the analysis
ensemble of the previous analysis time. That is, the members of the global background ensembles are all 3-
to 9-hour lead time forecast trajectories. To suppress gravity wave oscillations, the background trajectories are
initialized with a digital filter algorithm (Lynch and Huang 1992) employing a 3-hour half window.

The data assimilation procedure we follow for conventional (non-radiance) observations is summarized by the
nine steps given below. The modifications to the algorithm that are needed for the assimilation of satellite
radiance observations, in addition to the assimilation of conventional observations, are described in Section 4.

1. The nonlinear observation operatorH is applied to each ensemble background trajectory,xb(i)(t), i =
1,2, . . . ,k, to obtain theglobal background observation ensemble{yb(i)}, i = 1, . . . ,k. The ensemble
average of the background ensemble is calculated in observational space by calculating the ensemble
averagēyb of {yb(i)}. Then aglobal background observation ensemble perturbations matrixYb is con-
structed by taking its columns to be the vectors obtained by subtractingȳb from each ensemble member
yb(i). Here,H is a four-dimensional observational operator that interpolates the background ensemble
members to the time and location of the observations. The time interpolation is carried out by outputting
the background ensemble trajectories with a 1-hour frequency and applying a linear interpolation to ob-
tain the background state at the observation time. In the two horizontal spatial dimensions,H is a simple
bilinear interpolation. Since the vertical coordinate in the NCEP GFS model is sigma (defined as the ratio
of the pressure to the surface pressure), while the vertical coordinate of the observations is pressure, the
vertical interpolation is somewhat more complicated than the temporal and the horizontal interpolations:
for each ensemble member, we first calculate the pressure at the sigma levels, multiplying sigma by the
background surface pressure of the given ensemble member; the 28 sigma levels define 28 sigma layers,
where the lowest layer is defined by the surface (where sigma is 1) and the lowest sigma level; we find
the sigma layer that contains the observation; finally we linearly interpolate using the logarithm of the
pressure values at the bottom and top of the sigma layer. Since the logarithm of the surface pressure is
part of the state vector,H is a nonlinear function for all observations.

2. Theglobal background ensemble perturbation matrixXb is constructed by first taking the ensemble mean
x̄b(ta) of {xb(i)(ta)} at the analysis time and then taking thei-th column of the matrix to bexb(i)(ta)−
x̄b(ta).

3. All data needed to obtain the analysis ensemble at a given grid point are selected. Below,ȳb
[`] andYb

[`]

refer to the rows of̄yb and Yb, which representlocal backgroundinformation at the location of the
observations that were chosen for the calculation of thelocal analysis ensemble, {xa(i)

[`]
}, at the given grid

point, likewise,yo
[`] is thelocal vector of observations, andR[`] is thelocal observation error covariance

matrix for the chosen set of observations. (Hereafter, the subscript[`] refers to a local region associated
with an arbitrary grid point.)

4. The matrixC[`] = (Yb
[`])

TR−1
[`] is computed. We define the entries ofR[`] by the values provided by

NCEP in the operational observational data files. In addition, we assume that the observational errors
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are uncorrelated. This assumption makesR[`] diagonal, thus the calculation ofC[`] is computationally

inexpensive. [Hunt et al. (2007) suggest solvingR[`]C
T
[`] = Yb

[`] for C[`] when R[`] is non-diagonal.]
In some of the experiments, we reduce the weight of observations that are located further than a given
distance (e.g., 500 km in this paper) from the analysis grid point. We achieve this by multiplying the
entries ofR−1

[`] by a factorm(r) ≤ 1, which is a monotonically decreasing function of the distance,r,
between the location of the analysis grid point and the location of the observation.

5. The eigensystem of
[
(k−1)I/r +C[`]Y

b
[`]

]
is determined. The eigenvectors and eigenvalues are then

used to calculate the matrix̃Pa
[`] =

[
(k−1)I/r +C[`]Y

b
[`]

]−1
. Herer ≥ 1 is a multiplicative covariance

inflation factor. In our implementation,r is a smoothly varying three-dimensional scalar field. (See
Section 3.1 for more details.)

6. The matrixWa
[`] = [(k−1)P̃a

[`]]
1/2 is computed using the eigenvalues and eigenvectors calculated in the

previous step.

7. The vectorw̄a
[`] = P̃a

[`]C[`](y
o
[`]− ȳb

[`]) is computed and then added to each row ofWa
[`]. The columns of

the resulting matrix are theweight vectors{wa(i)
[`]
}.

8. The analysis ensemble members{xa(i)
[`]
} at the analysis grid point are obtained fromxa(i)

[`]
= Xb

[`]w
a(i)
[`]

+ x̄b
[`];

hereXb
[`] andx̄b

[`] represent the rows ofXb andx̄b(ta) corresponding to the analysis grid point.

9. After completing step (iii)-(viii) for each grid point, the results of step (viii) are collected to form the
global analysis ensemble{xa(i)}.

A detailed discussion of the parallel computer implementation of the algorithm and the assessment of one
particular code implementation on a Beowulf cluster are presented in Szunyogh et al. (2007).

3 Results with conventional observations

Our implementation of the LETKF on the NCEP GFS model has been validated in three steps, gradually adding
realistic features to the observing network:

• A time series of “true” states was generated by an integration of the GFS model at T62L28 resolution
starting from an operational NCEP analysis truncated to T62L28 resolution. Simulated vertical soundings
were generated by adding random observational noise, with a presumed covariance matrixR, to the “true”
grid point values of the surface pressure, virtual temperature, and two horizontal components of the wind
vector. Sensitivity to the observational coverage was investigated by rejecting observations at a given
percentage of randomly selected locations. A detailed assessment of the results from these experiments
was published in Szunyogh et al. (2005). Here, we show results only for the case when observations are
retained at 10% of the grid points.

• Using a time series of “true” states simulated observations were generated at the locations of the ob-
servations of the real atmosphere. To obtain the location and the type of the observations we used, a
data base that included all observations that were operationally assimilated at NCEP between 1 January
2004 0000UTC and 29 February 2004 1800UTC, with the exception of satellite radiance observations,
but including all satellite-derived wind observations. We also excluded all types of surface observations
except for the surface pressure. Some results from these experiments were published in Szunyogh et al.
(2007).
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• The observations of the real atmosphere, which were used to obtain the locations and types of the obser-
vations in the second set of simulated observations experiments, were assimilated. The most important
results from these experiments were published in Szunyogh et al. (2007).

3.1 Results with observations of the real atmosphere

One objective of our numerical experiments was to compare the performance of the LETKF with that of a
state-of-the-art operational data assimilation system. The state-of-the-art reference data assimilation system
used in the Szunyogh et al. (2007) was the Spectral Statistical Interpolation (SSI) of NCEP (Parrish and Derber
1992), one particular implementation of 3D-Var, which was used in operation at NCEP until April 2007. NCEP
generously provided analyses that were generated with the SSI using the version of the model (at T62L28
resolution) and the observational data set, which we used in our LETKF experiments. In what follows, we
refer to this data set as theNCEP benchmark. NCEP also made available their operational high-resolution
(T254L64) analyses for the two-month period of the study. We used these operational analyses for verification
purposes after truncating them to the T62L28 resolution. The most important differences between the NCEP
operational and benchmark systems were in their resolution and the use of satellite radiances in the operational
system. [The same NCEP benchmark and operational data sets are also used in Whitaker et al. (2007).]

The parameters of the LETKF were set to the following values:

• The ensemble hadk = 60 members.

• In the horizontal direction, observations were considered from an 800-km radius neighborhood of the
grid point at which the state was to be estimated.

• The observations had equal weight [m = 1, see step (iv) of the LETKF algorithm] within a 500-km radius
of the grid point, beyond which the weight of the observations,m decreased linearly to zero at 800 km.

• In the vertical direction, observations were considered from a layer around the grid point, and this layer
had a depth of 0.35 scale height between model levels 1 and 15 (below sigma= 0.372), above which
the depth gradually increased to 2 scale heights at the top of the atmosphere (defined by sigma= 0.003).
Here, the scale height was defined as the vertical distance in which the surface pressure decreased by a
factor ofe, that is, the unit-scale-height deep vertical layer was defined by ln(s1/s2) = 1, wheres1 was
sigma at the bottom of the layer ands2 was sigma at the top of the layer.

• The covariance inflation coefficientr tapered from 1.25 at the surface to 1.2 at the top of the model at-
mosphere in the SH extratropics and from 1.35 to 1.25 in the NH extratropics, whiler changed smoothly
throughout the tropics (between 25◦ S and 25◦ N) from the values of the SH extratropics to the values of
the NH extratropics.

For further implementation details see Szunyogh et al. (2007). Here, we show only one representative result:
the comparison of 48-hour forecasts started from the LETKF and the NCEP benchmark analyses. (Figure3.1).
In the SH extratropics the LETKF forecasts are more similar to the operational analyses throughout the entire
depth of the model atmosphere. In the NH extratropics, the performance of the two data assimilation systems
is similar: the LETKF provides more accurate predictions of all variables at altitudes higher than the 100 hPa
pressure level, while below that level, the benchmark shows slightly better agreement with the operational
model. Although the differences between the forecast errors are small at most levels, these differences are
statistically significant except for the geopotential height below 300 hPa and the wind between 200 and 100 hPa.
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Figure 1: Root-mean-square error of the 48-hour LETKF forecasts (crosses connected by solid lines) and the 48-hour
NCEP benchmark forecasts (open circles connected by dashes). The error is estimated using the operational NCEP
analyses as proxy for truth. Left panels show the results for the SH extratropics, while right panels show the results for
the NH extratropics. The averages are taken over all model grid points south of20◦N in the SH and over all model grid
points north of20◦N in the NH, and over all forecasts started between 11 January 2004 0000UTC and 27 February 2004
1800UTC. (The last two days of February are not included in the verification, because the verifying data set was not
available beyond the end of February.) Figure is from Szunyogh et al. 2007.
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3.2 The role of flow-dependent information

In an ensemble based Kalman filter, the background ensemble perturbations provide a representation of the
background uncertainty.The analysis can reduce the error in the background when good quality observation
are available to make the correction in the space captured by the background ensemble.The role of the analysis
ensemblexa(i) is to represent the space of uncertainties taking into account the corrections in the state estimate
achieved by the assimilation of the observations.

In reality, a finite size ensemble cannot fully capture the space of uncertainties and observations are not always
available to make the corrections in the well-captured directions of uncertainties. We have found the experi-
ments with simulated observations extremely useful in exploring the flow dependence of the performance of
the ensemble in capturing the background and analysis uncertainties. In this case the “true” state is known
and the difference between the analysis or the forecast and the true state can be projected on the ensemble
perturbations. Since in the LETKF the ensemble based covariance and the observations are considered only
from a local volume around the grid points, the projection can be calculated for each grid point by calculating
the projection based on only those state vector components that are associated with grid points from the given
local region. To obtain a quantitative diagnostic quantity, we normalize the square of the projection of the error
on the ensemble with the square of the magnitude of the difference between the forecast and the “true state” .
In the ideal case, when the error is fully captured by the ensemble, this quantity, called theexplained variance
in our papers, is equal to 1. When the ensemble completely misses the error, the explained variance is 0.

Another diagnostic quantity that we have found extremely useful in explaining the behavior of the LETKF is the
E-dimension(Ensemble dimension) which was originally introduced by Patil et al. (2001) and was described
in detail in Oczkowski et al. (2005). The E-dimension measures the steepness of the eigenvalue spectrum of
the ensemble based estimate of the analysis or forecast error covariance matrix. Numerically, the formula for
the E-dimension is

E =

(
∑k

i=1

√
li

)2

∑k
i=1li

, (8)

whereli , i = 1, . . . ,k, are the eigenvalues of the covariance matrix. Similarly to the explained variance, the
E-dimension can be calculated for each grid point based on information from the related local region. The E-
dimension is a real number between 1 andk. The lower the E-dimension, the steeper the eigenvalue spectrum of
the covariance matrix. The heuristic meaning of the E-dimension is that in the case of low E-dimension, a few
orthogonal error patterns dominate the field of uncertainty captured by the ensemble, and in the case when the
E-dimension is high, many equally important error structures contribute to the ensemble based estimate of the
uncertainty. [For further illustration of the properties of the E-dimension on simple examples see Oczkowski et
al. 2005)].

The relationship between error growth, explained variance and E-dimension is illustrated by Figure3.2. Two
panels are shown for each of the three experiments: the top panels are for the randomly distributed simulated
observations, the middle panels are for the realistically distributed simulated observations, and the bottom
panels are for the observations of the real atmosphere. The left panels are for analysis time, while the right
panels are for 120-hour forecast lead time.There is a simple relationship between the E-dimension and the
explained variance:the lower the E-dimension, the more likely that the explained variance is high.This is a
property that is independent of the experimental design and the forecast lead time.

Interestingly, the distribution of the E-dimension with the explained variance at analysis time is more similar
for the two experiments, in which the observations are realistically distributed (two lower left panels). This
indicates that the relationship between E-dimension and explained variance at analysis time is more affected
by the spatial distribution of the observations than by the model errors. What makes this result even more
interesting is the fact that the model errors have a large effect on the magnitude of the analysis and forecast
errors: the errors for the real atmosphere are about twice as large as for the perfect model scenario.
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Figure 2: Joint distribution of the analysis/forecast error and the explained variance for the Northern Hemisphere extra-
tropics. The bin increments are 0.005 for the explained variance and 0.4 for the forecast error. Color shades indicate
the mean E-dimension for each non-empty bin. Shown are the distributions for the experiments that assimilate randomly
distributed simulated observations (top panels), simulated observations at the locations of the observations of the real
atmosphere (middle panel) and observations of the real atmosphere (bottom panel). Left panels show the distribution at
analysis time, while the right-hand-side panels show the distribution at 120-hour forecast lead time. Note the different
scale for the analysis/forecast errors in the bottom panels. The statistics were collected for forecasts stared over the
periods of 15 January, 2000, 0000 UTC- 15 February, 2000, 1200 UTC (top panels), 11 January, 2004, 0000 UTC- 29
February, 2004, 1200 UTC (middle panels) and 11 January, 2004, 0000 UTC- 15 February, 2004, 0000 UTC (bottom
panels).
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The larger the forecast error the more certain that the E-dimension is low. Also, the lower the E-dimension
the more certain that the explained variance is high (right-hand-side panels). In other words, the lower the
predictability the more certain that the predictability of predictability is high. In practical terms,when the
forecast error is large we can expect the ensemble to do a good job in capturing the space of uncertainties.
This general rule applies to both the perfect model and the real atmosphere. The only major difference between
the two cases is that for the real atmosphere the explained variance saturates at around 0.9 instead of 1 and that
the lower bound for the explained variance increases less rapidly with the forecast error.

Another diagnostic is the spread-skill relationship: the correlation between the spatio-temporally changing
fields of the root-mean-square error in the ensemble mean forecast and the ensemble spread. It may seem that
for a well-designed ensemble prediction system this correlation should always be high. The reality, however, is
more complex than that (e.g., Barker 1991; Houtekamer 1993; Whitaker and Loughe 1998, Kuhl et al. 2007).
In particular, when the error field is dominated by random errors the correlation is expected to be nearly zero.
The top panel of Figure3.2 depicts such a case for the analysis time in the two extratropics: 10% coverage
of randomly placed observations can efficiently remove errors with well-defined structures, the correlation at
analysis time is nearly zero. As the errors grow with time, and well-defined structures develop, the correlation
also grows rapidly reaching a maximum value of about 0.4−0.5 at around 60-hour forecast lead time. When
the simulated observations are placed at the locations of the conventional observations of the atmosphere, the
initial correlation in the extratropics becomes higher, especially in the Southern Hemisphere (middle panel of
Figure 3.2) . This indicates that the observational coverage, especially in the Southern Hemisphere, is not
sufficient to remove all background errors correctly captured by the ensemble. (This result also explains the
presence of low-dimensional regions and the associated high explained variance at analysis time in the middle-
left panel of Figure3.2.) The picture does not change much when the simulated observations are replaced with
observations of the real atmosphere: the correlation at analysis time is 0.4 in the Southern Hemisphere and
0.32 in the Northern Hemisphere (bottom panel of Figure3.2). The main difference between the figure for the
perfect model scenario and the figure for the real atmosphere is the lower correlation for the case of the real
atmosphere at the longer forecast times. This is most likely due to the effects of model errors.

The correlation in the tropics behaves differently from the correlation in the extratropics. For the randomly
distributed simulated observations the initial correlation is relatively high (about 0.31). This indicates that a
10% observational coverage is not sufficient to remove all background errors that are correctly identified by the
ensemble. When the observations are taken at realistic locations (middle and bottom panel), at analysis time
the correlation is the lowest in the tropics, which is primarily due to the larger correlations in the extratropics
in this case.

4 Preliminary assimilation results with satellite radiance observations

We have recently implemented the CRTM radiative transfer model of JCSDA on our implementation of the
LETKF on the NCEP GFS model. We illustrate our capability to assimilate satellite radiance observations by
assimilating observations taken by the AMSU-A sensor of the Aqua satellite. The application of the LETKF to
satellite radiance observations and to conventional observations is different in the following important details:

• In step 1 of the LETKF algorithmH(x) is replaced byH(x) + b(x), whereH(x) is calculated by the
CRTM andb(x) is a state dependent bias component. In our current implementation, we assume that the
bias can be efficiently approximated byb(x) = aTs+bs+ g, whereTs is the skin temperature,s is the
scan angle, anda, b andg are global constants, i.e., they are the same for all observations of a given
satellite channel. The constantsa, b andg for the different satellite channels are estimated as part of the
LETKF algorithm.

• The estimates of the parametersa, b and g for the different satellite channels, which are needed to
calculateb(x) are obtained by the method ofstate augmentation, i.e., by applying the LETKF to an
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Figure 3: Correlation between the root-mean-square error of the ensemble mean forecast and the ensemble spread. The
analyses are obtained by assimilating simulated observation at random locations (top panel) simulated observations at
the locations of the conventional observations of the real atmosphere (middle panel) and conventional observations of
the real atmosphere (bottom panel). Results are shown for three different geographical area: Northern Hemisphere
extratropics (blue), Southern Hemisphere extratropics (red) and tropics (green). The average is taken over all forecasts
started between 11 January 2004 0000UTC and 25 February 2004 1800UTC.
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augmented state vectorz instead ofx. The components ofz are composed of the components ofx and
the parametersa, b andg for the different satellite channels.

• An estimate ofa, b and g for each satellite channel is obtained for each model grid point at which
satellite radiance observations are assimilated. The global estimate of these parameters for the different
satellite channels is obtained by a weighted average of the estimates for the different grid points. (See
Ferig et al. 2007b for a detailed description and an evaluation of the performance of this bias correction
strategy.)

• Different localization strategies are applied to the conventional and the satellite radiance observations in
step 3 of the localization algorithm:

– While the calculation ofH(x) for the conventional observation is typically based on background
information from a strongly localized region around the observation, the calculation ofH(x) with
the CRTM is based on the background atmospheric state from the entire vertical column of the
model atmosphere. (We recall that in the LETKF,H is applied to the global atmospheric statex
and that the localization is done afterwards in observation space.)

– A satellite radiance observation is assimilated at all model levels at which theweighting function
in the radiative transfer model is larger than a given percentage of the maximum of the weighting
function. [A detailed theoretical and experimental justification of this approach is provided by
Fertig et al. (2007a)]. The results show below are obtained with a cut-off value of 60%.

Here, we show only one particular result to demonstrate the positive effects of the AMSU-A radiance observa-
tions on the accuracy of the analysis (Figure??). These observations have a large positive impact on the short
term (48-hour) forecast accuracy in the Southern Hemisphere and a mixed impact elsewhere. Since the obser-
vation are primarily associated with the virtual temperature state variable of the atmosphere, the large improve-
ment in the meridional component of the wind in the Southern Hemisphere indicates, that the ensemble-based
estimate of the covariance between the temperature and wind background errors is sufficiently accurate to lead
to a major improvement of the wind analysis.

5 Concluding remarks

Our results suggest the flow-dependent background error covariance information improves the accuracy of the
analysis, the short-term deterministic forecasts and the short-term ensemble forecasts in, and downstream of,
the regions where the observational coverage is relatively sparse. We have also demonstrated that the LETKF
algorithm is an efficient practical approach to utilize the flow-dependent information:

• The LETKF can be efficiently implemented on a parallel computer architecture.

• At the reduced model resolution and for the reduced observational data set used in our numerical ex-
periments, the LETKF provides more accurate analyses and forecasts than the SSI in regions of sparse
observational coverage and comparably accurate analyses and forecasts in regions of dense observational
coverage.

• Preliminary results with AMSU-A observations suggest that the bias in the satellite radiance observations
can be efficiently estimated and corrected with the LETKF data assimilation scheme.

We believe that the main advantage of the LETKF over other formulations of the ensemble based Kalman filter
is its computational efficiency, since theoretical considerations and the results of numerical experiments suggest
that other formulations of the ensemble based Kalman filter should be similarly accurate. We also note that the
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Figure 4: Height-latitude cross section of the impact of the assimilation of AMSU-A radiance observations on the quality
of 48-hour forecasts of the meridional wind. Shown is the difference between the zonal mean root-mean-square errors
in the forecasts with AMSU-A and conventional observations and the forecasts with only conventional observations .
Negative values indicate locations where the AMSU-A observations improve the forecasts.The average is taken over
all forecasts started between 16 January 2004 0000UTC and 27 February 2004 1800UTC. The color shades show the
difference in ms−1.
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current version of the LETKF algorithm can also be viewed as one particular implementation of a general
framework for an efficient implementation of the ensemble based Kalman filter. For instance, the equation to
update the state estimate (to obtain the analysis) could be replaced by a variational scheme; one could also
add balance constraints to filter gravity waves, either by modifying the current update equation or within the
variational framework.

While the results so far are encouraging, there are many important issues left to explore:

• Our results and the results of others working with ensemble based Kalman filters, most importantly
those of Whitaker et al. (2007), show little advantage of using flow-dependent information in regions
of dense observational coverage. Since these results were obtained at model resolutions that are much
lower than the current operational model resolutions, the question arises whether we can expect to find
more advantages of using flow-dependent information about the estimation errors when the resolution is
increased to the resolution of the current and future operational models.

• Closely related to the previous issue, the results suggests that increasing the observational density may
have a similarly positive effect to that obtained by using flow dependent information about the error
estimates. Considering the rapid increase of the number of remotely sensed observations, how much
improvement can we expect in the future from incorporating flow dependent information into the data
assimilation process?

• One potential advantage of an ensemble based data assimilation system is that it provides initial con-
ditions for an ensemble prediction system at no extra cost and in a way that is consistent with the data
assimilation system. Little attention has been paid, so far, to the evaluation of the medium- and extended-
range ensemble predictions that can be produced with the initial conditions generated by the ensemble
based data assimilation systems.

• Current data assimilation systems cannot take into account directly the effects of model errors. Estima-
tion and correction of the effects of model errors is, in principle, possible within both the variational
framework (weak-constraint formulation) and the ensemble based Kalman filter framework (e.g., Baek
et al. 2006). It is unclear which framework provides a more efficient way to estimate, and to correct for,
the effect of model errors.
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