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ABSTRACT

A brief survey is provided of some of the numerical techniques developed, or under active investigation at the National
Centers for Environmental Prediction (NCEP) directed at improving the modelling of background error covariance oper-
ators used in the operational global and regional data assimilation systems.

1 Introduction

Some of the filtering techniques that are being used, or are intended for future use, as the covariance genera-
tors in NCEP’s Grid-point Statistical Interpolation (GSI) method of three-dimensional variational assimilation
(3Dvar) are described. The first three topics discussed: the recursive filter; the Triad/Hexad methods; and their
“blended” refinement, are more or less completed developments. The remaining sections will be devoted to
pending research developments that include: a new normalization strategy for inhomogeneous filters based on
ideas in differential geometry; multi-scale covariance synthesis facilitated by multigrid techniques; Analysis er-
ror characterization employing multiscale filters, and their possible application to preconditioning; and, finally,
an approach to treating covariances possessing sharp geographical gradients. While the focus is on applications
to 3Dvar, it is noted that equivalent techniques remain relevant in the context of weak-constraint 4Dvar, where
it is desirable to have a smooth time-space covariance of the model error component.

2 The Recursive Filter

The recursive filter (e.g., Purser and McQuigg 1982, Hayden and Purser 1995) is an efficient numerical tech-
nique for simulating diffusion along a grid line. Covariance operators can be constructed with it (Purser 1983,
Lorenc 1992), as is now done in the GSI at NCEP.

The idea is to take a finite-degree Taylor series approximation to the exponential function, e.g., truncating at
fourth degree:

exp�z�� 1� z� z2�2� z3�6� z4�24� (1)

Then apply this function to an effective Diffusivity�negative-Laplacian�Duration:

S � I���tD∇2����tD∇2�2�2���tD∇2�3�6���tD∇2�4�24� (2)

In finite difference terms in one dimension, this is a symmetric band matrix operator. Since the isotropic diffu-
sion operator in N dimensions factorizes into separate orthogonal one-dimensional diffusion operators, we will
find that the inversion of S applied to an input field is well approximated by the sequence of N one-dimensional
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linear inversions applied consecutively along each of these orthogonal directions. Any given factor, say S1 of
S, acting only along the x1 direction, is a symmetric band matrix possessing a band Cholesky factorization,

S1 � L1LT
1 � (3)

where L1 is a lower triangular band matrix, LT
1 its transpose. This allows the inversion of each part of the linear

system approximating
exp��tD∇2�ψ � χ � (4)

projecting into the xi direction to be carried out in two recursive steps,

φi � L�1
i χi�1� (5)

χi � L�T
i φi� (6)

The first of these is a series of recursive “back-substitution” steps progressing forward along the xi grid; the
second is the adjoint of this “recursive filter” retrogressing along the same grid. But the final result, ψ � χN ,
after all N directions have been processed in this manner, is an approximation to the application of the inverse
of the operator in (4) applied to the original χ0 � χ :

ψ � exp��tD∇2�χ � (7)

which is formally a way of writing the solution to the duration-t diffusion equation applied to χ . There are
minor technicalities involving boundary conditions, but these are most conveniently swept away by assuming
mirror-reflection conditions at boundaries (which may be placed slightly beyond the boundaries of the physical
domain of interest in order to minimize numerical artifacts).

Difficulties can arise with recursive filters if the degree of the exponential-approximating polynomial is too high
and the diffusivity�duration too large compared to the grid spacing. But such a polynomial can be factored
into real-coefficient polynomials of degree not exceeding two, and this factored filter solves the conditioning
problem.

It is convenient to choose the duration to be t � 1�2 since this makes the “aspect tensor” (normalized cen-
tered second-moment) of the response function identical to the diffusivity in the idealized case of spatially
homogeneous smoothing in the absence of boundaries.

Figure 1: A pair of vertical cross-sections showing the response function resulting from a point source of
an anisotropic covariance. Following Desroziers (1997), the anisotropy is designed to make the response
function look horizontally isotropic and approximately homogeneous in geostrophic momentum space. For
a point source inside a baroclinic zone, these physical-space cross-sections display significant anisotropy.

The idea of using a diffusive process to generate a covariance contribution is made explicit in the assimilation
techniques of Derber and Rosati (1989) and Egbert et al. (1994), which are extended to the anisotropic diffusion
on the sphere by Weaver and Courtier (2001). Figure 1 shows a pair of vertical cross-sections of a covariance
whose anisotropy is guided by a variant of the semi-geostrophic transformation method of Desroziers (1997).
Robust and efficient techniques enabling the production and accurate amplitude modulation of such covariances
are described in outline in the following three sections.

12 ECMWF Workshop on Flow-dependent aspects of data assimilation, 11–13 June 2007



PURSER, R. J. ET AL.: COVARIANCE MODELLING IN A GRID-POINT ANALYSIS

3 Triad and Hexad methods

The general diffusion operation in N dimensions can be formally broken down into N line operations applied
sequentially. (One convenient choice of the N directions is given by the columns of a Cholesky factor of the
aspect tensor. The amount of smoothing in this jth direction must then be such as to make the orthogonal
projection of this line-smoother’s aspect tensor into the jth coordinate direction equal to the square of the jth
diagonal element of the Cholesky factor.) The generally oblique line-oriented smoothers for each of the given
directions in such a decomposition can still take the form of a pair of recursive operations along each of the
set of such parallel lines threading the grid. However, with a generally oblique orientation to these lines, the
progression of the filters would need to be interrupted at every single step to bring the target points of the filter
back to actual grid points. (A scheme like this resembles a semi-Lagrangian advection scheme at each stage j,
except with “time” replaced by the spatial coordinate directions, xj.)

An attractive alternative, to avoid the massive amount of interpolations that such a “Cholesky filter” would
entail, is to seek a larger set of filtering directions which, when oblique, still constrains all the lines to remain
generalized grid lines (such as 45-degree lines of a square grid). Three directions in two dimensions (2D)
and six directions in three dimensions (3D) suffice. This is the essential idea behind the “Triad” and “Hexad”
algorithms (and their generalization to higher dimensions) as described by Purser et al. (2003).

The best choice for triads involves three alignments whose smallest grid steps, or “generators”, form the small-
est possible grid triangle. Equivalently, triad directions lie parallel to the diameters of the smallest possible
grid-hexagons (a pair of which are illustrated in Fig. 2).

(a) (b)

Figure 2: Two possible triads in the lattice of generators of a square grid. The triads share two of the three
directions (horizontal, and 45 degree), but no other triad possesses both of these particular directions.

The “projection” of the given aspect tensor onto the respective 1D aspect tensors, or “spreads”, of the line
operators is essentially linear, since normalized second moments add under pure convolution (sequential filters),
and approximately so even when the inhomogeneities render the convolutions “impure”. But in general, the
three spreads resulting from the projection of the desired aspect tensor into any given triad are likely to leave
one of these spreads negative, which cannot correspond to any sensible smoothing or diffusing operator.

The Triad Algorithm responds to the occurrence of negative spread in a trial triad by replacing the offending
spread’s direction by that given by the alternative diameter that will allow a minimal grid-hexagon to appear
(see Fig. 2).The new spread (from a new projection) is then always non-negative, although one of the other two
spreads will typically have become negative through this transition; in this case, the process is iterated until a
valid solution (three spreads non-negative) is found. Such a solution always exists and is unique for any given
aspect tensor. This algorithm is applied at each geographic gridpoint.

The Hexad algorithm abides by the same general principle, but now six directions are needed to provide the nec-
essary degrees of freedom. Geometry dictates that these directions correspond to those of the vertex-diameters
of the smallest skewed “cuboctahedron” (a figure with 12 vertices, 6 quadrilateral faces and 8 triangular faces,
as illustrated by the pair of “adjacent hexads” in Fig. 3.)

Again, lattice geometry forces unique rules for the transition between one hexad and its alternative, once five
of the generators (and hence, cuboctahedron diameters) are nominated to be held fixed. The generic transition
is exemplified in Fig. 3.

The triads or hexads and their accompanying spreads will clearly change with geographical location in the
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Figure 3: Two possible hexads in the lattice of generators of a cubic grid. The hexads share five generators,
g1 � � �g5, but the hexad of panel (a) possesses g1 while that of panel (b) possesses g7 instead. No other
hexads possess all five of g1 � � �g5, so any transition is unambiguous (discounting vertex permutations).
Further details are given in Purser (2005)

usual case of an inhomogeneous covariance. Sequencing the line operations involved among the various triads
or hexads so that there is no mutual interference of the filters whose lines of operations intersect is therefore a
nontrivial problem when these operations are multi-processed.

The solution is provided by an idea from abstract algebra. The generators of a lattice can be “colored” using
the non-vanishing elements of a suitable “Galois Field”. The colors form a periodic pattern (the period being
some prime number) over the generator lattice. For example, every generator of the basic triad is a different
color supplied by the non-null elements of GF(4), the Galois field of four elements. (Each Galois field has a
null element that plays the role of “coordinate origin” in some sense.) In three dimensions the simplest relevant
Galois field is GF(8), which provides seven “colors”, of which each hexad enjoys six. (Although it is only
the “additive” properties of these Galois fields that we use for coloring the triad and hexad generators, their
multiplicative properties suggest the structure of the most elegant and efficient transition rules in the coded
algorithms.)

Since the generators of each triad or hexad are now assigned different “colors”, then, to avoid a numerical clash
of intersecting line filters at grid points, while allowing operations to proceed in parallel, it is sufficient to do
all line operations of one color, at one session, and complete the session before another color’s operations are
begun.

Early experiments with these methods revealed slightly ugly numerical artifacts in the synthesized covariances
at places where triads or hexads changed. Using numerical schemes designed to exaggerate these “dislocations”
we show an array of nine impulses inhomogeneously smoothed by the basic triad algorithm in Fig.4, where we
see that, even distributing the smoothing over four successive diffusing iterations (panel b), does not entirely
eliminate the effect. The cure involves enlarging the allowed set of smoothing directions at each point so that
a single triad or hexad can be replaced by an equivalent symmetric superposition of triads or hexads that form
a “ball” in the linear aspect tensor space, with the ball centered on the original aspect tensor “point” in this
space. Again we invoke the (approximate) linearity of spreads to justify this remedial measure, in which the
amount of the fragment of the ball falling within the province of each triad or hexad is “weighed” and collected
to the centroid of this fragment. It can be shown that, by capping the radius of such a ball, the number of triads
or hexads intersected is limited to a number that implies no more than a total of four smoothing directions
for such “blended triads” and no more than 13 directions for “blended hexads”. The ball is regarded as a
blending kernel that effectively mixes (symmetrically) a neighborhood (in aspect tensor space) of the smoothing
operators around the intended aspect tensor value. By such a blending the cause of unsightly dislocations in
the covariance field, which can be traced to an excessive rate of change of filter coefficients near the transition
boundaries, is effectively removed. Fig. 5 shows the results obtained with the blended triads, where now, even
a single iteration shows no unpleasant numerical artifacts. In the blended algorithms, Galois sequencing for
conflict-free parallel algorithms are still possible, though the respective fields need to be larger; in 2D we now
find that the eight non-null elements of GF(9) can be paired up to provide the needed four colors for the blended
triads; in 3D, the 26 non-null elements of GF(27) pair up to provide the 13 colors required to segregate the 13
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(a)    Basic triad, one smoothing iteration (b)    Basic triad, four smoothing iterations

Figure 4: Examples of “dislocations” occurring along the lines of transition between two triads’ domains
when smoothing by the basic triad (but with filter numerics selected to exaggerate the visual impact of
the effect). Even after distributing the smoothing by four sequential smoothing operations, the dislocation
remains visible.

(a)    Blended triads, one smoothing iteration (b)    Blended triads, four smoothing iterations

Figure 5: Examples showing the results of applying the “blended triads” method to perform the same
smoothing operations as in Fig. 4. The dislocations incurred by the basic triad method no longer intrude.

directions required by each blending of hexads. The full details of these technique are given in Purser (2005).

4 The problem of normalization

A homogeneous diffusive process in Euclidean geometry and without boundaries is easy to normalize whether
or not it is isotropic – the final function has a standard Gaussian form and the amplitude, for aspect tensor A, will
be �2πA��N�2 in N dimensions. Weaver and Courtier (2001) address the isotropic problem in the spherical case.
The difficulty occurs when the diffusivity varies, or the domain is significantly non-Euclidean. At present we
are using a randomized-trace Monte Carlo method similar to those described by Rabier and Courtier (1992),
Weaver and Courtier (2001), Weaver and Ricci (2004), but the cost is substantial if we want to adapt to a
different covariance from one analysis time to another. We are therefore exploring other potentially more
efficient methods of approximation based on the small-t asymptotics of the inhomogeneous diffusion equation.

The case of spatially varying anisotropic diffusivity can be mapped into an equivalent problem of uniform and
isotropic diffusivity in a non-Euclidean (Riemannian) space, albeit with a spatial “capacitance” function of
position appearing in the transformed diffusion problem. (Capacitance may be thought of as a varying gauge
of metal forming a thin smoothly curved shell in the 2D heat-flow analogy.) But what is gained by such an
algebraic manoeuvre?
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First, we note that, since we are not simulating “real” diffusion, but merely taking advantage of a convenient
numerical way to generate self-adjoint quasi-Gaussian covariance contributions, we are at liberty to choose the
capacitance in the untransformed problem that anticipates a uniformity of this quantity once transformed. The
original aspect tensor effectively assumes the role of contravariant metric tensor, gi j , in the transformed problem
in which diffusivity is unity isotropically. What we gain is that the amplitude can now only depend upon the
distribution of (intrinsic) curvature of the transformed space – a second derivative of the metric when examined
in local (Riemann) “normal coordinates”. In a way, we have simplified the factors upon which the amplitude of
the filtering kernel can depend, having identified the only possible source of the amplitude variation to be the
curvature of the transformed space. The transformed diffusion equation is now always of the standard form,
expressed in tensor notation:

∂P
∂ t

�
1

g
1
2

∂
∂xi g

1
2 gi j ∂P

∂x j � (8)

Note that some choices of aspect tensor distribution, such as those determined by a mapping to a deformed
domain geometrically identical to the physical one, but in which covariances regain their horizontally isotropic
appearance (like the semi-geostrophic space suggested by Desroziers 1997) will actually solve the normaliza-
tion immediately by recovering an effectively “flat” transformed space. More generally, it is necessary to deal
with the effects of the space’s intrinsic curvature.

Our problem, the asymptotic approximation to the “heat kernel” in Riemannian geometry is one in which
mathematicians have taken a lively interest for a variety of reasons and there is a considerable literature on this
fascinating subject (McKean, 1970; Gilkey 1984; Rosenberg 1997, Grigor’yan and Noguchi 1998, Lafferty and
Lebanon 2005). The next section discusses some ideas that can possibly improve the computational efficiency
and reliability of the inhomogeneous filter amplitude estimation.

5 Differential geometry and the “Parametrix” expansion

In the general case, the transformation to a Riemannian geometry might not seem to have made the amplitude
estimation problem any easier. However, it does seem to simplify the extraction of a useful asymptotic ex-
pansion for the “amplitude quotient”, that is, the ratio of the actual diffusion filter amplitude divided by the
corresponding Gaussian formula for it. The approach is the “Parametrix method”. Normal coordinates are
constructed to be “as Cartesian as possible locally”; axes are orthogonal at the local origin, through which
straight-line radials in the normal coordinates are actually geodesics of the Riemann geometry and distances
are true along them. The idea behind the parametrix method is to represent the evolving solution of the diffu-
sion problem as the corresponding Euclidean solution in the normal coordinates, multiplied by a modulating
function that is smooth in time t and in space in the neighborhood of the origin.

Then, for sufficiently small t the modulating function can be expanded (asymptotically) in a series of powers of
the normal coordinates and in t. The only part of the solution we shall end up being interested in is the part at
the local origin and at t � 1�2, and the terms which contribute to the successive powers of t in this evaluation
can be shown to be polynomials in the curvature tensor and its covariant derivatives. The recursive process
by which successive terms are developed resembles a more complicated version of the “method of Frobenius”
used to find power series solutions of ordinary differential equations.

While, in principle, this process can be continued without limit, in practice it rapidly leads to extremely compli-
cated algebra. The successive approximations, typical of many asymptotic series, do not necessarily converge
and, when they do converge, do not necessarily converge to the true solution, even for the smallest t. Neverthe-
less, provided the original aspect tensor varies sufficiently smoothly and gradually, the approximate solutions
obtained by this approach should be adequate. Most of the algebraic operations involved can actually be re-
duced to forms that lend themselves to mechanization. We give idealized examples of the results obtained from
the asymptotic method but only give a fragmentary sketch of the steps required for the general case. (Details
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will be supplied in a pair of forthcoming NCEP office notes treating this entire topic.)

In the special 2D case where there is axisymmetry in the curvature about the local origin, the curved-space
diffusion equation is:

∂P
∂ t

�
1

g
1
2

∂
∂ r

g
1
2

∂P
∂ r

� (9)

where P is the quantity diffused, g is a transverse metric term, r the radial distance. The solution of (9) is related
to the solution to the Euclidean diffusion equation,

∂P0

∂ t
�

1
r

∂
∂ r

r
∂P0

∂ r
� (10)

which is:

P0 �
1

4πt
exp

�
�

r2

4t

�
� (11)

by assuming
P�t�r� � �1�R�t�r��P0�t�r�� (12)

The radial distribution of g can be related to the profile of Gaussian curvature, κ , and leads to a forcing function
for the asymptotic problem which we can put into the form,

� � Dr2�Er4� � � � � (13)

Then, after some algebra, we find that the modulating function R must everywhere satisfy a balance among
three sub-expressions, conveniently written:

0 ���� ��� (14)

where � is a combination linear in R and not involving any of the curvature terms in � :

� � t

�
∂R
∂ t
�

1
r

∂R
∂ r
�

∂ 2R
∂ r2

�
� r

∂R
∂ r

� (15)

while � is a term separately linear in� and in � :

� � �

�
R�

2t
r

∂R
∂ r

�
� (16)

When we come to expand R in powers:

R�t�r�� ∑
s�p�0

Rs�pt
srp� (17)

we notice that the expression for �, while inhomogeneous separately in its effects on the time and space
exponents, s and p, is homogeneous in its effect upon the “slab index” defined, h � 2s� p. This fact suggests
the asymptotic procedure of iteratively solving (14) at successive integer values of this h.

The first nontrivial result of this procedure, for h � 2, can be shown not to involve the � term, but to give the
simpler balance between the� and � terms at this degree that consequently imply,

R�2��t�r� ��2Dt�
1
2

Dr2� (18)

where the parenthetic superscript on R indicates the maximum degree h of the contributing terms. The quantity
D can be shown to be proportional to the central Gaussian curvature, K � κ�0�:

D ��
K
6

� (19)
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so that, evaluating the amplitude quotient, A� R�12 �0�, at the nominated standard time t � 1�2, one obtains the
first order amplitude quotient (relative to the planar Gaussian formula):

A�1� � 1�
K
6

� (20)

The parenthetic superscript on A is interpreted slightly differently; it now denotes the maximum contributing
degree of K or its derivatives (but not of h, as we had earlier for R). It is found that, upon working through
the solution corresponding to the next non-trivial slab index, h � 4 (where we do now need to involve �), and
expanding E in terms of K and the Laplacian, at the center, of the curvature, κ :

E �
�K2

90
�

∇2κ
40

� (21)

the next order of approximation produces:

A�2� � 1�
K
6
�

1
60
�K2�∇2κ�� (22)

and so on.

For the idealized case of uniform curvature in 2D and 3D the asymptotic solutions, drastically simplified by the
absence of any of the derivatives of curvature, nevertheless reveal some features that are instructive about the
general case.
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Figure 6: Comparison between true 2D amplitude quotient, A�K�, and a few of the small-K asymptotic
expansions to it, truncated to the degree indicated by the parenthetic superscript in each case, for the
geometries (hyperbolic and spherical) of constant curvature. The series is a divergent one, though very
accurate in the first few terms even for the relatively large K shown at the limbs of this graph.

In the 2D case, depicted in Fig. 6, the series expansion is asymptotic in the typical sense, being divergent at any
K when continued to ever larger truncations. In contrast, the 3D case actually exhibits a convergent expansion,
moreover, to the simple analytic function,

Â�K� � exp�K�2�� (23)
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Also, for negative K, corresponding to a hyperbolic geometry, this is also the true solution,Â�K��A�K�� K� 0.
However, the same convergent asymptotic expansion gives an erroneous limit for positive K (the “3-sphere”),
as the graph of Fig. 7 confirms. (The behavior of the asymptotics for odd- and even-dimensioned spaces
alternates, with the 2D and 3D cases providing the exemplars for the general pattern.) In general Riemannian
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Figure 7: Comparison between true 3D amplitude quotient, A�K�, and the convergent limit of the asymptotic
expansion approximating it. This limit converges to the true solution only at negative K.

geometry, the division of the terms that supply the constraints for the parametrix expansion still produces three
kinds of sub-expressions, � , � and �, which must balance at each successive slab index. Naturally we must
generalize the slab index; in 2D it is generalized to h � 2s� p� q and in 3D to h � 2s� p� q� r, where the
terms of R are correspondingly generalized (in 3D):

R�t�x�y�z� � Rs�p�q�rt
sxpyqzr� (24)

The expansions lead to each asymptotic term being a polynomial primarily in the tensorial quantities that
constitute the Taylor series coefficients of the (covariant) metric tensor in the normal coordinates; but by a
theorem of Cartan (see Berger et al. 1971) relating these tensors to universal polynomials in the Riemann
curvature tensor, Ri

jkl , and its covariant derivatives, it is then possible (in principle) to express the desired
coefficients for the approximation to the amplitude quotient also in terms of a finite combination of the Riemann
tensor and its first few covariant derivatives. In 3D all the curvature is expressible in terms of the simpler
symmetric “Ricci” tensor (e.g., Synge and Schild 1949, Kreyszig 1991), defined as the contraction of the
Riemann tensor:

Rjl � Ri
jil� (25)

for in this case,

Ri jkl � gikR jl �gjlRik�gilR jk�gjkRil� �gikg jl�gilg jk�R�2� (26)

where the “Ricci scalar”,

R� Ri
i� (27)
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is the contraction (i.e., the trace) of the Ricci tensor itself. In 2D, curvature is further restricted to the Gaussian
curvature, κ , which equals one half (minus one half, in some notations) of the Ricci scalar.

Using a result from Gilkey (1984), we find that the N-dimensional generalization of the second order amplitude
quotient approximation, (22) is

A�2� � 1�
R
12

�
1

1440

�
2Ri jklR

i jkl�2Ri jR
i j �5R2�12∇2R

�
� (28)

which, by (26), specializes for dimensions N � 3, to:

A�2� � 1�
R
12

�
1

480

�
2Ri jR

i j �R2�4∇2R
�

� (29)

The prospect of employing such a method, even at this low order of expansion, shows some promise of being
able to improve efficiency of the amplitude estimation. Being an asymptotic method, we expect it to fail
for values of the curvatures or their derivatives exceeding about ��1�. However, we can use the computed
diagnostics of these quantities, even before applying any amplitude adjustment, to assess whether we are within
the parameter range for which such an adjustment can be expected to be valid; if the values are diagnosed to
be excessive, we can take remedial measures by smoothing or reducing the variability of the aspect tensor
components that we begin with.

6 Covariance synthesis by multifilter superposition in a multigrid framework

Although discussion up to this point has focused on the technicalities involved in the construction of Gaus-
sian contributions to the covariance, we should not ignore the fact that the simple quasi-Gaussian that results
from a single application of a diffusion-simulating filter is probably not a very realistic model of background
uncertainty by itself.

If we can afford to construct a superposition of such quasi-Gaussians, each at a different scale and relative
amplitude, then we can sculpt a more promising and realistic covariance shape. (Actually, it is better to use this
approach to construct the asymmetrical square-root of the covariance, as this way, it becomes much easier to
ensure the final result is positive definite.)

The computational expense of applying the recursive filters repeatedly, but at different scales, could be greatly
mitigated by adopting a multigrid strategy. Then, filtering at the coarse scales is done (cheaply) on only a
correspondingly coarse grid. The contribution is interpolated to the next finer grid and added to another quasi-
Gaussian contribution appropriate to this scale, and so on. Of course, the quantity being smoothed must also be
carried consistently up this hierarchy in the first place, using the adjoint of the grid-refinement interpolators.

7 Analysis error estimation and characterization; Preconditioning

In classical data assimilation theory, we understand the analysis precision to be simply the sum of the precisions
of background and measurements and, if observations were spatially homogeneous, we could ascribe to them a
local error power spectrum and obtain the corresponding analysis power spectrum directly.

If, with realistic observation distributions, we artificially assume this homogeneity locally, then spatially adap-
tive filters with profiles shaped by the multigrid method discussed in the previous section, would be a useful
way to characterize the resulting errors. As discussed by Lorenc (1992), the appropriate localized spectral
distribution of the precision for a scatter of point observations of the analyzed variable should be flat (“white
noise”), at least over the range of wavenumbers resolved. More generally, the spectral form of vertically and
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Figure 8: Idealized plots showing the shapes in the spectral domain of a Gaussian background field error
covariance, B, and the analysis covariance A obtained after the assimilation of a spatially-homogeneous
distribution of in situ measurements of the analysis variable. The filter having the response equal to the
ratio of these, A�B, would serve as a preconditioner for this problem. The complement of the square-root
of this preconditioning profile, shown as the red curve, G, in the bottom frame, can be approximated by a
superposition, Ĝ, of a small number of Gaussian filters, whose contributions are also seen as half-curves.

horizontally homogenized data of a given type should be approximately the spatial density of this data type,
times the Fourier transform of the operator,

R̂�1 � HT R�1H (30)

that represents the projection of the measurement precision for a datum of this type into the analysis domain
(we use here the standard notation suggested by Ide et al., 1997). The simplest case of in situ measurements
of the actual analysis variable, illustrated schematically in Fig 8, suggests a way of generating a covariance
roughly equivalent to the analysis covariance, by following the background error covariance filter with the filter
associated with the profile, marked A�B, in the third frame. A way of generating an approximation to this
operator is suggested by the bell-shaped profile of the complement of A�B or, more appropriately, the square-
root of A�B, since the latter representation makes it easier to ensure that an approximating sequence of filters
for A�B maintains positive definiteness. The fourth panel shows how well the complement, G � 1�

�
�A�B�,

can itself be approximated as a small superposition of appropriately weighted Gaussians which, of course,
can be implemented efficiently. If our analysis variable is a streamfunction and our measurements are winds,
then the operator R̂�1 has a parabolic spectral profile, which consequently changes the qualitative shape of the
analysis, as shown in Fig. 9. Then again, if we interpret the abscissae as denoting vertical wavenumbers, we
can also consider the profiles one might obtain from infrared or microwave passive sounder data (here modelled
by the idealized profile suggested by Gautier and Revah, 1975), and where the smoothed out measurement of
temperature represents the vertical derivative of a geopotential-like analysis variable. This case is illustrated
in Fig. 10. Even in these difficult cases, the superposition of a handful of Gaussian filters seems capable of
producing a reasonable fit to the ratio A�B. One use of such filters would then be to adjust the deviations of
ensemble members from their mean in order to account for the proper shrinkage of an ensemble associated with
the injection of information from measurements. Another possible role, as suggested by the side captions of
the third frames of these figures, is to provide a preconditioner for the cost-function descent algorithm.
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Figure 9: As in Fig. 8, except for the case of measurements of the derivative of the analysis variable.

8 Analysing variables with abrupt gradients

Earlier, we discussed the problem of adequately normalizing the amplitudes of filters when the aspect tensors
vary gradually and smoothly with location, and mentioned that asymptotic methods show promise in performing
this task efficiently. But, in cases where the covariance really does change abruptly, the parametrix expansion
method can be of no value. However, such abrupt changes are often tied closely to topographic transitions, such
as sharp gradients in terrain height, or land/water boundaries. The difficulties these sharp transitions cause are
particularly troublesome when carrying out NCEP’s 2D “Real-Time Mesoscale Analysis” (RTMA, de Pondeca
et al., 2007) of surface analyzed parameters over the US, where such topographically-tied covariance changes
do occur. One remedial approach we are giving some attention is based on a variant of Riishøjgaard’s (1998)
method.

The analysis could be carried out once for an elevation (say) that is somewhat higher than the local aver-
age obtained by heavily smoothing the true elevation, so that the covariances on this hypothetical surface can
themselves now be taken to be smooth. Another, completely independent analysis is performed at a parallel
smoothed elevation that is somewhat lower than the local average. The extra vertical interpolations are com-
puted in accordance with the prescribed part of the covariance, which, as in Riishøjgaard’s method, depends
upon the extra variable (in this case, elevation). Thus, the observations are only permitted to influence the re-
spective analyses in proportion to how close their actual elevations are relative to the nominal elevations of the
two hypothetical surfaces. The final analysis is similarly the interpolation between the two surface’s analyses
to a target at the true elevation at each geographical position. The result is expected to give realistically rapid
changes in surface analyzed variables at places where the topography changes rapidly, while the underlying co-
variances seen by the generating filters remain perfectly smooth, allowing a reliable and accurate normalization
of them. It might be possible to extend these ideas to 3D if the duplicated analysis domains are confined to only
the lowest levels.
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Figure 10: As in Fig. 8, but illustrating vertical spectral profiles associated with radiance measurements of
the derivative (temperature) of the analysis variable (geopotential).

9 Conclusions

The numerical grid-smoothing technique of the Recursive Filter has shown itself to be a versatile tool for
the efficient construction of approximate models of background error covariances. In combination with the
Triad and Hexad methods, we can now generate smooth quasi-Gaussian covariance contributions with arbitrary
degrees of anisotropy. Asymptotic methods based on differential geometric ideas are being developed and
tested in the GSI at NCEP to make the normalization of these filters in inhomogeneous cases more accurate
and efficient, while multigrid methods are being developed to facilitate the efficient construction of covariances
having more general profile shapes than can be obtained with only a few Gaussians.

Finally, we have discussed some more speculative ideas concerning how future developments of these tech-
niques might address the problems of analysis error characterization, preconditioning, and covariance mod-
elling where abrupt changes occur.
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