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Abstract 

An implicit normal mode balance approach is used to represent the balanced part of analysis increments within 
advanced data assimilation systems. The methodology introduced here (1) naturally extends previous linear (Rossby) 
operators used in variational operational systems to include a first-order, case-dependent correction using a tangent-
linear Baer-Tribbia’s type of balance combined with Temperton’s implicit NMI formulation; (2) represents an efficient, 
accurate and coherent treatment of nonlinearities compatible with tangent-linear code; (3) can naturally include tangent 
linear physical processes. Because of the incorporation of physical forcing terms in the balance conditions, the 
procedure implicitly imposes flow-dependent and physically dependent (hereafter referred to as case-dependent) 
background-error covariances. 

1. Introduction 
The use of Hough mode representation directly into the analysis step has previously been considered for 
instance by Parrish (1988) and in early 3D-Var development work at NCEP (Parrish and Derber, 1992, see 
end of Sec. 1 and Sec. 2), ECMWF (Heckley et al. 1992). The motivations at the time for doing this were to 
partition adequately the contribution of Rossby and Gravity mode contributions in the final analysis state. 
We recall that the analysis was performed on the total fields rather than analysis increments as done 
nowadays. A dual goal was achieved by doing this since controlling gravity wave imbalances in the resulting 
analysis could harmoniously be imposed in this representation through ideas from Nonlinear Normal Mode 
Initialization (NNMI) balance concepts. The shift to an incremental variational (VAR) formulation where 
analysis increments are analyzed at each inner-loop of the complete VAR analysis (Courtier et al. 1994, Sec 
3) alleviated the need for a full nonlinear balancing procedure so that only simple linear relationships; e.g. 
the linear balance equation, could be used with success to link mass and rotational wind increments. 

In an attempt to introduce flow-dependent background error covariances in ECMWF’s 4D-Var analysis, 
Fisher (2003) introduced the quasi-geostrophic (QG) set of balance equations into the definition of the 
balanced part of the analysis increment. The r.h.s. terms of the QG Omega equation (Hoskins et al. 1978) 
being nonlinear in terms of streamfunction and temperature, this automatically introduces flow-dependency 
in the problem. 

This effect also appears in the nonlinear Charney’s balance equation complementary to the Omega equation. 
It allowed particularly more synoptically coherent divergent wind increments whereas the previous ECMWF 
regression approach was unable to detect such basic-state properties. Fisher’s approach could be extended to 

                                                      
1 Corresponding author address: Dr. Luc Fillion, Division de Recherche en Météorologie, Environment Canada, 2121 
Route Trans-canadienne, Dorval, Qc, Can, H9P 1J3.  email: luc.fillion@ec.gc.ca 



FILLION, L.: CASE DEPENDENT IMPLICIT NORMAL MODE BALANCE OPERATORS 

 
126 ECMWF Workshop on Flow-dependent aspects of data assimilation, 11-13 June, 2007 

include diabatic effects as suggested by Fillion et al. (2005) for instance. Those effects can on some 
occasions of intense physical forcing be modulating the so-defined balanced circulation and potentially 
crucial for an effective data assimilation over cloudy/rainy regions and could be a crucial ingredient to 
consider. This is currently lacking in current 4D-Var feasibility studies such as in Benedetti and Janiskova 
(2007).  

There are growing evidences of limitations and problematical computer code development one faces when 
going in the direction of extending the use of the QG balance equations. Practical implementations 
performed up to now made simplifying assumptions when building tangent-linear QG balance operators such 
as the use of a pressure coordinate form of the equations and simple static stability for instance. In the 
vicinity of significant topography, the former assumption can be shown to neglect structures in the balanced 
part of the analysis increment for instance (see Lindskog’s contribution, this proceeding, for an example of 
this and extra terms to consider). The concept of dynamical and moist-physical balance (related to spin-up 
problems) requires a careful numerical approach to enforce “balance” that stays as close as possible to the 
forecast model’s numeric and sequence of application of physical parameterization schemes (e.g. moist-
convection, large-scale condensation, cloud scheme and coupling with radiation processes). Since we deal 
with analysis increments here, tangent-linear (TL) processes are of concern. Implementing a QG approach 
requires the construction of TL/Adjoint (AD) extra code not used in the TL model (or perturbative model) 
and also implies additional coding if additional forcings are needed on the r.h.s. of the Omega equation. It 
appears highly desirable to avoid the proliferation of such parallel computer code, if possible, while at the 
same time maintaining or even improving the degree of dynamical/physical balance through TL forcings 
desired. Failing to achieve these requirements may lead to poor performance or even negative impacts of 
assimilating observations related to cloudy/rainy regions for instance. It is the purpose of the present study to 
demonstrate the existence of such an approach applicable in VAR analysis systems. 

2. Theory 
In the following, we present the procedure to define (1) the tangent-linear balance operators; (2) the 
introduction of the extended control vector; (3) the methodology on how to construct background error 
statistics for the new analysis variables. 

2.1. Tangent-linear balance: Rossby and Gravity contributions 

The idea to use nonlinear normal mode theory (Baer-Tribbia 1977) in the present data assimilation context 
(where QG equations are used) is obvious considering the link between QG theory and NNMI (Leith 1980, 
hereafter L80). We borrow Temperton’s (1988) notation (hereafter T88), make the link with L80’s results 
and will assume the reader has a previous knowledge of these and related studies. Daley’s book (1991) can 
also be a valuable reference since we avoid discussing the basic details of normal mode representations. 

Let x represents the vector of model variables. The forecast model may be written as: 

 x A x (x)i N
t

ε∂
= +

∂
 (1) 

where A is a constant coefficient matrix representing the linear terms in the model, )(xN  represents the 
nonlinear terms (including dynamical as well as physical nonlinearities) and ε  is a scaling parameter 
(typically Rossby number) which measures the relative importance of nonlinearities. We now assume we 
have at hand the G (Gravity) and R (Rossby) projectors. Machenhauer’s (1977) balance sets  
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 0xG
t

∂
=

∂
 (2) 

There is a large amount of indications necessary here concerning this last statement based on practical results 
of implementation into NWP models in the past. We postpone a bit these restrictions and will come back on 
the most serious ones later. Using (1) and basic algebraic properties of A and G, the latter condition is easily 
shown to imply 

 1G x (AG) G (x)i Nε −=  (3) 

Starting from a linearly balanced state xRx =0 , L80 showed (within the context of Boussinesq equations) 

that the first order correction to 0x produces a state 1x given by 

 1 0 0

1x x (AG) G (x )i Nε −= +  (4) 

s.t. (1) it implies a QG omega field and (2) geopotential and streamfunction fields are corrected from their 
linearly balanced values (used to define 0x ) according to a nonlinear relationship related to the classical 

nonlinear balance equation (ref. Sec 5). We stress here, based on this last statement and known results from 
NNMI theory that the streamfunction field has a balanced gravity component. We come back later on this. 
The preceding results are the starting point to extend Fisher’s approach. Starting from Eq.(1), the tangent-
linear equations governing the evolution of the perturbation xδ about the basic state x  are 

 x
x A x N xi
t

δ δ ε δ∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠
 (5) 

We now ask, rather than Machenhauer’s condition applied to the full fields but to the perturbed state about 
the basic state, the condition: 

 0xG
t

δ ∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
 (6) 

 xG A x G N xiδ ε δ=  (7) 

In the same way nonlinearities were treated in NNMI, we make use of Andersen’s (1977) forward timestep 
trick but now using the TL model (see T88, for the derivation of his eqn. 2.14) to get (dropping the scaling 
parameter): 

 G G

x

xA ( x) ( )i
t

δ δ ∂
Δ =

∂
 (8) 

where G)( xδΔ  is the change that has to be made to the state we want to balance and G)(
x

x
t∂

∂δ  is the 

gravity mode projection of the TL time-tendency about x .  

Remark 1: The condition Eq.(6), similarly to Wergen (1987) and Ballish’s Incremental NNMI (1992) 
proposals, considers the inclusion of diabatic effects in the initialization procedure (e.g. maintenance of the 
thermal tide developed in the background fields during a data assimilation cycle). In our case here, the 
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background time tendency is our reference for defining a balanced increment; i.e. it is in that sense that we 
use the word “balance” in this study. 

Remark 2: Due to its relationship with QG theory, the TL-balance condition (8) has similar “flow-
dependent” virtues as those exemplified by Fisher (2003). The practical advantage of (8) however, as stated 
in Sec.1 is the fact that we do not need do build TL/AD code for taking into account nonlinearities, the 
existing TL model is used through a simple call for one forward timestep. This option must be available with 
the computer code structure of the VAR analysis however as it is the case for the Environment Canada (EC) 
framework. In addition, including physical forcing in the balance condition (8) is straightforward within a 
call to the TL/AD code (again at EC), allowing for a complete compatibility of the dynamical and physical 
forcings. We give an example of this in the next section. 

Remark 3: There is obviously no iteration involved in solving (8). Equation (8) state how, starting from a 
perturbation state vector Rxδ , a correction vector G)( xδΔ  (along the gravity subspace) can be added to get 

to the TL-balance subspace about x (noted B). The latter should not be confused with the TL 

Machenhauer’s balance subspace.  

Remark 4: It is well known that NNMI implementations in operational NWP models can produce realistic 
topographically induced vertical motions (Daley 1979, Temperton 1991). The normal mode framework 
being compatible with the geometry and numeric of the numerical model, these latter properties are more 
consistently taken into account than with QG equations. 

It is appropriate at this point to introduce the second aspect of the approach taken here starting from the 
current operational practice at operational centers with VAR analysis systems (including the ECMWF one 
before their introduction of the QG equations). It was assumed until now (for approximation purposes) that 
the streamfunction analysis increment provided the information to build the balanced mass increment 
through a linear balance relationship. It is clear however, based on normal mode theory, that Rossby and 
Gravity modes have vorticity components (e.g. see T88). We introduce the new grid-point control-vector 
(ignoring the usual preconditioning for simplicity) as:  

 ξ ( , , , , , )R u u u usT q pδ δψ δψ δχ δ δ δ= T  (9) 

As compared to the previous formulation, the streamfunction increment has been separated in two parts, the 
“Rossby” part and an “unbalanced” part. For global analysis grids, where large-scale divergent Rossby 
circulation is important, a more appropriate definition would include the Rossby part of divergence so that 
one would have 

 ξ ( , , , , , , )R R u u u usT q pδ δψ δχ δψ δχ δ δ δ= T  (9a) 

For limited-area analysis such as ours (or smaller), we use the approximation (9). A consistent and elaborate 
method to rigorously define the Rossby part is described in Sec. 2.2 below. As a first implementation test 
into our LAM4D analysis scheme, and because no special re-computations of background error statistics for 
these new variables has been done, we compute the Rossby part of the balanced increment by the usual VAR 
operators and set to zero the unbalanced part of streamfunction; i.e. δψR = δψ ; 

regressionlinearbydefined;),(
0;)(where)(

VV
FF
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Rs δδδ
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=∇•∇≡=

 



FILLION, L.: CASE DEPENDENT IMPLICIT NORMAL MODE BALANCE OPERATORS 

 
ECMWF Workshop on Flow-dependent aspects of data assimilation, 11-13 June, 2007 129 

We note that the Rossby modes used here are consistent with T88’s approximation to be used hereafter (i.e. 
zero divergence modes). In the vertical however, the reconstruction of temperature and surface-pressure 
increments still uses the regression approach of Parrish and Derber (1992), rather than T91’s procedure (see 
Sec. 3). The result is, obviously, still Rossby type increments however. In an analogous manner as Baer-
Tribbia’s (1977) approach, we refer to that initial step  

RR δδ Rx =      s.t.      T),,0,(
RRRRR spT δδδχδψδ ==x  

as the “order zero” balance step. It is interesting to note that this balancing step is not flow-dependent. The 
construction of the gravity-mode correction G( x)δΔ  that goes with this Rossby mode correction satisfies: 

 [ ]G G

x

xA ( x) ( ) G TL(x, x , )Ri i q
t

δ δ δ δ∂
Δ = =

∂
 (10) 

where B∈Δ+= BtsRB xxxx δδδδ ..;G , 

is the tangent-linear balance increment. Note that in (10), we have made explicit the tangent-linear input 
variables used by the TL model. Note that δq is used as input to the TL model in (10). Obviously, that part of 
the definition of the balanced increment is not only important to ensure better dynamical balance but has a 
very important property of being case-dependent; i.e. the basic-state dynamical and physical properties are 
taken into account explicitly in (10). The balanced gravity part of the analysis increment vector being 
(neglecting the symbol ∆ due to the zeroing step of the gravity-mode part of the increment): 

 x ( , , , )G G G G GsT pδ δψ δχ δ δ= T  (11) 

The full tangent-linear balanced increment being: 

 
0

x ( , , , )

( , , , ) ( , , , )
B B B B B

R R R G G GR G

s

s s

T p

T p T p

δ δψ δχ δ δ

δψ δχ δ δ δψ δχ δ δ

=

= = +

T

T T
 (12) 

The final computation of the analysis increment vector in VAR, taking moisture into account, is: 

 0x ( , , , , ) ( , , , , )B B B u u uB us sT q p T pδ δψ δχ δ δ δ δψ δχ δ δ= +T T  (13) 

In (8), we need to find the gravity projection of the TL time-tendencies appearing on the r.h.s (the linear 
operator A is known). That aspect pertains to Temperton’s T88 theory of implicit NNMI (INMI). It is 
demonstrated that (within some approximations on the beta-terms), no explicit knowledge of the horizontal 
normal mode structures and frequencies are required to apply NNMI. The price to pay being the need to 
solve a set of elliptic equations for each vertical mode. We now make a next step in the direction of T91 
baroclinic implementation of INMI. We assume the reader has carefully examined the scheme in T91 and 
introduce directly his numerical procedure except that here the nonlinear time tendencies are replaced by TL 
time-tendencies (ref. 8 above). The procedure is as follows: 

 

1. Run the TL model for one forward timestep to obtain the “observed” tendencies 
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2. Solve for each vertical mode “l” desired: 

 (N.B.: T88’s simplified scheme is used here for illustration purposes) 
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3. Compute l
l

l
l

l
l Pf

t
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ˆ

(1ˆ Δ
Φ

=Δ
∂
∂

Φ
=Δ ζ  

4. Project back in gridpoint space the balancing increments in vertical mode space. 

The procedure to construct the vertical normal modes is described in T91 and references together with the 
procedure to invert P increment to T and ln(ps) increments. Further comments on this latter aspect are given 
in the next sub-section. 

2.2. Background error statistics 

In order to upgrade the control vector to (9), one need to define what the Rossby part of the streamfunction 
error (including velocity potential for global analysis grids) is from an ensemble of error samples in order to 
build error variances and auto-correlation spectra. In current operational practice, one simply uses the 
streamfunction component as the basic balancing variable, so this definition is not necessary. The solution to 
this new requirement can be found in T88’s linear INMI (LINMI). This procedure simply sets to zero the 
gravity mode component of a given state vector (Williamson 1976). Using T88’s simplified scheme (see his 
Sec. 4) for illustration purposes, assume we have an error sample of the form 

oso pqTvu ),,,,( δδδδδδ =ε . 

The projection of that state vector onto Rossy modes is given by the following steps: 

1. Compute ospRTPD )ln*,0,( +== δφδδδζ  

2. Project onto vertical normal modes 

3. For each vertical mode:  

 a) Solve for the mass correction for each vertical modes “l”:  

ll
l

oo fPPf )()()( 2
2

2 ζδ +∇−=Δ
Φ

−∇  

 b) Compute the Rossby part of δP:  
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lll PPP oR ))(()()( δδδ Δ+=  

 c) Compute the Rossby part of δζ : 

l
l

ll Pf
oR ))(()()( δδζδζ Δ

Φ
+=  

4. Project back on gridpoint space in the vertical to get: 

RPD ),0,( δδδζ =  

5.  Recover the mass variables (following T91, Sec 3.): 

RR spTP )ln,()( δδδ →  

6. Finalise to get the Rossby part of the error sample: 

RR spT ),,0,( δδδψδ =ε  

Remark 1: It is important to stress here that the above T88’s LINMI scheme is the least accurate in terms of 
retention of the standard structure of the Rossby modes; i.e. they are stationary (zero natural frequency) and 
non-divergent. As mentioned in Temperton (1989) (hereafter T89), for non-rotated system of coordinates on 
the sphere where the linearized dynamics remains separable, it is possible to design a hierarchy of INMI 
approximation to the standard explicit normal mode construction that better approximate the Rossby mode 
properties. This means that for such global analysis grids (e.g. EC’s global 4D-Var, ECMWF 4D-Var, Met-
Office’s 4D-Var, NCEP’s 3D-Var, JMA’s global 4D-Var for instance), the approach suggested here to alter 
the control vector using (2-10), (2-11) it is highly desirable to use say scheme “B” of T89 or if possible, go 
to the standard representation (system “A” in T89). Note that in principle, nothing precludes using an explicit 
representation for the Rossby modes and then using the implicit representation for the gravity correction 
(INMI type) coming from (8) during the minimization. 

Remark 2: The inversion in step 5 above can be subtle if, as mentioned in T91, the lowest model level is not 
at the ground and if geopotential (or variable P) and temperature variables are not vertically staggered. 
Parrish and Derber (1991) (See their sec.2) encountered that specific issue and opted for an EOF 
representation in the vertical. In our approach here, EOF of total streamfunction error cannot be used since it 
does not strictly represent the Rossby part of the error. At EC, a Charney-Phillips type of vertical grid has 
recently been developed that makes the hydrostatic operator invertible and a consistent approach can be 
designed so that the inversion step 5 above can be performed.  

3. Results with the Canadian LAM4D 
We describe in the following, some basic results of the incorporation of the new balance operators. At 
Environment Canada (EC), a Limited-Area 4D-Var analysis system has been developed in order to enable 
the analysis of synoptic and mesoscale weather. This system in its North American continent extension is 
referred to as LAM4D. The main objective of this new analysis system being the improved forecast of 
precipitation up to 48h (more emphasis on the first 24h), with a replacement of the Canadian Regional 
analysis system currently operational at CMC. Tangent-linear (TL) and adjoint (AD) versions of GEM-LAM 
were developed. Putted simply, LAM4D uses bi-Fourier spectral representation on a rotated limited area 
domain rather than spherical harmonics on the sphere. Otherwise, the two configurations of the code were 



FILLION, L.: CASE DEPENDENT IMPLICIT NORMAL MODE BALANCE OPERATORS 

 
132 ECMWF Workshop on Flow-dependent aspects of data assimilation, 11-13 June, 2007 

designed to be mostly transparent to the user. Helmholtz’s functions are being used in the two analysis 
systems with non-separable background error correlations in their respective spectral spaces.  

The horizontal resolution of the Nonlinear GEM-LAM NA-Continental model is 15 km (the current 
operational regional model being at 15 km). Figure 1 shows the analysis grids for the Regional FGAT 3D-
Var and LAM 4D-Var systems respectively. However, for the experiments presented here, the inner-loop 
resolution of the incremental LAM4D is set at 80 km rather than 35 km (6h time assimilation window for 
both systems). The analysis and models have 58 vertical levels. 

 

48hr Forecast model Analysis increments

Regional 15 km Global T108  240x120 ~185 km

LAM 10 km

x 12

LAM 35 km

225x300 x 2
x 3.5

Global T571
1140 x 570 x 22
~ 35 km

 
Figure 1: Regional FGAT 3D-Var anaylysis grid; i.e. regular Gaussian grid at T108. Below, LAM4D 
analysis grid for the target configuration.  

The first experiment was designed to illustrate the flow-dependency imposed by the new balance operators in 
a similar way as illustrated by Fisher (2003) using QG balance operators. Since the former are defined from a 
one forward time step of the TL model, this requires technically (at EC) that we proceed in 4D-Var mode. It 
is possible in our context to run the TL model in various modes on demand during the minimization process. 
This is performed using so called “events” that have to be defined in the 4D-Var code. This means we can 
run the TL model in the forward observation operator with TL physics and run another TL for one time step 
adiabatically or whatever process requested when building the balanced part of the analysis increment during 
the minimization. This is a powerful feature that enables flexibility that was particularly in need for our 
definition of balance operators.  

Of particular illustrative and testing importance is also the possibility for us to run the TL model in what we 
call “identity” mode; i.e. during the time stepping of the TL model, the regular scheme is replaced by a 
simple copy of the fields for one time step to the other. In other words, this call to the TL model goes 
through entry and exit programs but the fields are left untouched for the time stepping part of the code. This 
has been a feature useful for debugging many technical aspects that we of course will skip here. Using a 
single temperature observation at 500 hPa, the latter “identity” mode is useful since it allows using 
radiosonde observations centered at time 0h of the 4dvar analysis window and exclude the flow-dependent 
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structure of the analysis increment coming simply from the TL dynamics rather than showing evidence of the 
flow-dependent properties of the new balance operators. The case examined here is March 2nd 2007 where a 
significant snow storm was approaching the southern part Quebec, Canada. The 6h background specific 
humidity at 500 hPa valid at 9 UTC is shown in figure 3.  

Target Grid for Regional 48H Forecast at 10 km using GEM_LAM

Higher resolution nested 
grids on demand  (ex: 2km)

Vancouver
Montreal

LAM4D-Var_C: Continental

LAM4D-Var_L :Local
 

Figure 2: GEM-LAM grid extension corresponding to the lat-lon grid of LAM4D in Fig. 1 (black 
domain) together with local grids for 24 h forecasts.  

 
Figure 3: 500 hPa specific humidity for 2nd March 2007, 9 UTC. 

We now turn to the possibility of imposing a consistent divergent wind (then vertical velocity) at the analysis 
time that is in agreement with moist physical processes. This is particularly important for data assimilation 
over cloudy/rainy regions and also for the improved quantitative precipitation forecasts. As mentioned at the 
beginning of Sec. 2, we may include diabatic processes into the nonlinear term when enforcing a balance 
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between linear and tangent-linear gravity mode terms. This imposes a dynamical and physical constraint so 
as to stay close to the background time-tendency.  

It is relevant to stress here that the QG Omega equation is normally solved on all degrees of freedom in the 
vertical. Considering L80’s results, this suggests solving our TL balance condition for all vertical modes. 
This point was argued originally by Phillips (1981) (p.3) but gives important restrictions on this concerning 
strong diabatic and topographic effects where a first zeroing of gravity modes would be detrimental. That 
issue became fundamental in practical implementations of NNMI and the zeroing step was discarded. 
Nowadays, especially in the incremental context here, where we try to stay close to the background time-
tendencies, this remains in the lines of thought of the original work of Wergen (1987) but where he could 
impose more restrictions than here based on the explicit natural frequencies of the normal modes treated and 
vertical modes initialized.  

As stressed originally by L80 (Sec 8.), diabatic processes do depend on vertical velocity so that a simple TL 
approach as we intend to use here may be too crude and would require higher order approximation. It turns 
out that this does not appear to be the case with the strong winter storm examined here. Before discussing 
analysis results, we give in Fig. 5, results supporting our choice of incorporating a diabatic balance only in 
the 2 inner loop of LAM4D-Var. The first loop is using adiabatic TL balance operators. The TL error 
appears because of large-scale condensation and necessitates that we include it only in the second loop.  

Figure 6 shows that the old balance operators do not produce any flow-dependent analysis increment of the 
vertical velocity whereas the use of the new balance operators does, see Fig. 7. Figure 8 shows that the use of 
the new balance operators, diabatic or not, produces a reduction rate of the functional comparable to the old 
balance methodology (results of the latter not show; Total number of iterations involved differ by 4). Finally, 
Fig. 9 shows that the use of a diabatic balance operator can produce a model-consistent balanced vertical 
velocity in agreement with diabatic effects (large-scale condensation here) 

4. Summary and conclusions 
We have introduced an extension of balance operators to tangent-linear ones based on implicit normal mode 
theory (Temperton 1988, 1989, 1991). Theoretical results on the connection between quasi-geostrophic 
theory and normal mode initialization (Baer-Tribbia 1977) such as in Leith (1980) allowed us to formulate a 
simple procedure to define balance operators. The latter allows also for a consistent incorporation of physical 
forcings. The tangent-linear model is used adequately for one forward time step, thus avoiding the 
unnecessary proliferation of extra TL coding not present in the TL model to account for dynamical and 
physical forcings. 

A slightly new control vector and associated characterization of background error statistics was presented 
and based on Linear INMI (LINMI) from Temperton (1988). Preliminary results in the context of the 
Canadian LAM4D-Var analysis system exhibited evidence of flow-dependent analysis increments and 
coherent treatment of physical processes. One area of application of the new method where potential gain 
may me achieved is through the combination with current challenging attempts to assimilate cloudy/rainy 
data for instance. Obviously, moist-physical processes and direct coupling with dynamics through diabatic 
balance operators may play a dominant role. 

Using previous balance operators  
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Using new balance operators 

 
Figure 4: Vertical velocity increment (m/s) at 500 hPa valid at analysis time; i.e. for 2nd March 2007, 9 
UTC when assimilating a temperature observation at 500 hPa valid at the analysis time (blue contours). 
Upper panel, using the old definition of balance operators; Lower panel: using new definition of balance 
operators. Experiments performed in “Identity mode” using US radiosonde 72520. Contour interval 1 
cm/s. Maximum values: Upper panel: + 2.3 cm/s; Lower panel: - 4.6 cm/s. Superimposed, 500 hPa 
geopotential. 
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Loop 1 

 
 

Loop 2 

 
Figure 5: Specific-humidity error of the tangent-linear model w.r.t. two nonlinear runs. Large-scale 
condensation included. Moist-convection is absent and vertical diffusion is present. Upper panel: Using 
perturbation fields obtained from a 1st loop minimization. Lower panel: Using perturbation fields 
obtained from a 2ndloop minimization. In the first case, the error appears dominantly over regions where 
large-scale condensation is active and associated with the winter storm on the east coast (dominant over 
the cold front, see also Fig. 3). 
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0 h 

 
2 h 

 
Figure 6: Vertical velocity increments at 700 hPa (Pa/s) (over the winter storm) at the end of the 2 loop 
LAM4D-Var minimization using old balance. Upper panel: 2nd March 2007, at 9 UTC.; Lower panel: 
after 2h integration with the TL model where large scale condensation is active. The latter is also active 
in the TL during the minimization. The comma-shape signature of the snow-storm (see Fig.3) is apparent 
in the vertical velocity structure and is dominated by moist-physical processes. 
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0 h 

 
2 h 

 
Figure 7: As in Fig. 6 but with the use of the new case-dependent balance operators. The structure of the 
vertical velocity increment at the initial time is well organized synoptically and appears to be closely 
matched with the dynamical and especially large-scale diabatic forcing present in the TL model. There is 
a close correspondence at 0h and 2h showing that the model (using a 22 min time step) has not 
developed a different kind of vertical velocity than presented as initial conditions. 
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Figure 8: Value of the functional for 20 iterations (both loops). No large-scale condensation in TL and 
TL balance operators for 1st loop. Vertical diffusion is present. The 2nd loop uses large-scale 
condensation in both TL and TL balance operators. The horizontal resolution of the analysis is at 80 km 
for both inner loops and at 15 km for the NL model integration for the outer loop. All data normally used 
in operational regional analysis used. 

 
Figure 9: Temperature difference at 700 hPa between two minimizations. Both are LAM4D with 2 inner 
loops. One is using old balance operators and the other uses the new case dependent balance operators. 
Temperature differences reaching 0.5 deg near the low-pressure center. 
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