

A regime-dependent balanced control variable based on potential vorticity

Ross Bannister, Data Assimilation Research Centre, University of Reading **Mike Cullen**, Numerical Weather Prediction, Met Office

Funding: NERC and Met Office

ECMWF Workshop on Flow-dependent Aspects of Data Assimilation, 11-13th June 2007

Flow-dependence in data assimilation

- A-priori (background) information in the form of a forecast, **x**^b.
- Flow dependent forecast error covariance matrix (**P**_f or **B**).
 - Kalman filter / EnKF (**P**_f).
 - **MBM**^T in 4d-VAR.
 - Cycling of error variances.
- Distorted grids (e.g. geostrophic co-ordinate transform).
- Errors of the day.
- Reduced rank Kalman filter.
- Flow-dependent balance relationships (e.g. non-linear balance equation, omega equation).
- Regime-dependent balance (e.g. 'PV control variable').

VAR (B)

A PV-based control variable

- 1. Brief review of control variables, χ , and control variable transforms, **K**.
- 2. Shortcomings of the current choice of control variables.
- 3. New control variables based on potential vorticity.
- 4. New control variable transforms for VAR, K.
- 5. Determining error statistics for the new variables, K⁻¹.
- 6. Diagnostics to illustrate performance in MetO VAR.

1. Control variable transforms in VAR

VAR does not minimize a cost function in model space (1) $J(\delta \mathbf{x}, \mathbf{x}^{b}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} \sum_{t} (\mathbf{y}_{t} - \mathbf{h}_{t} (\mathbf{x}^{b} + \delta \mathbf{x}))^{\mathrm{T}} \mathbf{R}_{t}^{-1} (\mathbf{y}_{t} - \mathbf{h}_{t} (\mathbf{x}^{b} + \delta \mathbf{x}))$ VAR minimizes a cost function in 'control variable' space (2) $J(\chi, \mathbf{x}^{b}) = \frac{1}{2} \chi^{\mathrm{T}} \chi + \frac{1}{2} \sum_{t} (\mathbf{y}_{t} - \mathbf{h}_{t} (\mathbf{x}^{b} + \mathbf{B}_{0}^{1/2} \chi))^{\mathrm{T}} \mathbf{R}_{t}^{-1} (\mathbf{y}_{t} - \mathbf{h}_{t} (\mathbf{x}^{b} + \mathbf{B}_{0}^{1/2} \chi))$

1. Control variable transforms in VAR Example parameter transforms

- The leading control parameters ($\delta \zeta$ or $\delta \tilde{\psi}$) are referred to as 'balanced' (proxy for PV).
- Balance relations are built into the problem.

The fundamental assumption is that $\delta \zeta$ and $\delta \psi$ have no unbalanced components (there is no such thing as unbalanced rotational wind in these schemes). The **balanced vorticity approximation (BVA)**.

2. Shortcomings of the BVA (current control variables)

Unbalanced rot. wind is expected to be significant under some flow regimes

Introduce unbalanced components
$$\delta \psi = \delta \psi_b + \delta \psi_u$$
 $\delta p = \delta p_b + \delta p_u$
3rd line of MetO scheme $\begin{cases} \delta p = \mathbf{H} \delta \psi + \delta p_r \\ = \mathbf{H} \delta \psi_b + \mathbf{H} \delta \psi_u + \delta p_r \end{cases}$
Instead require $\delta p = \mathbf{H} \delta \psi_b + \delta p_u$ anomalous

For illustration, introduce shallow water system

Introduce variables
$$\delta \psi = \delta \psi_b + \delta \psi_u$$
 $\delta h = \delta h_b + \delta h_u$ Linearised shallow water potential vorticity (PV) $\begin{cases} \delta Q = gh \nabla^2 \delta \psi - fg \delta h \\ = gh \nabla^2 \delta \psi_b - fg \delta h_b \end{cases}$ (1)Linearised balance equation $0 = g \delta h_b - f \delta \psi_b$ (2)

2. Shortcomings of the BVA (current control variables) (cont.)

Regime	Large Bu (small horiz/large vert scales)	Intermediate	Small Bu (large horiz/small vert scales)
Balanced variable	Rotational wind (BVA scheme valid)	PV or equivalent variable	Mass (BVA not valid)

3. New control variables based on PV for 3-D system

For the balanced variable

 $\delta Q = \alpha_0 \nabla^2 \delta \psi_b + \beta_0 \delta p_b + \gamma_0 \frac{\partial \delta p_b}{\partial z} + \varepsilon_0 \frac{\partial^2 \delta p_b}{\partial z^2} \quad \text{PV}$ $0 = \nabla \cdot (f \rho_0 \nabla \delta \psi_b) - \nabla^2 \delta p_b \qquad \text{LBE}(\mathbf{H})$

For the unbalanced variable 2

$$\delta \overline{Q} = \nabla \cdot (f \rho_0 \nabla \delta \psi_u) - \nabla^2 \delta p_u \qquad \text{anti-PV}$$

$$0 = \alpha_0 \nabla^2 \delta \psi_u + \beta_0 \delta p_u + \gamma_0 \frac{\partial \delta p_u}{\partial z} + \varepsilon_0 \frac{\partial^2 \delta p_u}{\partial z^2} \quad \text{anti-BE} (\overline{\mathbf{H}})$$
Standard variables: $\delta \psi, \delta \chi, \delta p_r$
PV-based variables: $\delta \psi_h, \delta \chi, \delta p_u$ variables are equivalent at large Bu

Describes the PV-

Describes the anti-PV

Describes the divergence

For the unbalanced variable 1

δχ

4. New control variable transforms

- Are correlations between $\delta \psi_{b}$ and δp_{u} weaker than those between $\delta \psi$ and δp_{r} ?
- How do spatial cov. of $\delta \psi_b$ differ from those of $\delta \psi$?
- How do spatial cov. of δp_u differ from those of δp_r ?
- What do the implied correlations look like?

5.Determining the statistics of the new variables

ECMWF flow dependent workshop, June 2007. Slide 10 of 14.

6. Diagnostics – correlations between control variables

BVA scheme: $cor(\delta \psi, \delta p_r)$

-'ve correlations, +'ve correlations

ECMWF flow dependent workshop, June 2007. Slide 11 of 14.

6. Diagnostics (cont) – statistics of current and PV variables (vertical correlations with 500 hPa)

CURRENT SCHEME (BVA)

PV SCHEME

ECMWF flow dependent workshop, June 2007. Slide 12 of 14.

6. Diagnostics (cont) – implied covariances from pressure pseudo observation tests

ECMWF flow dependent workshop, June 2007. Slide 13 of 14.

Summary

- Many VAR schemes use rotational wind as the leading control variable (a proxy for PV the balanced vorticity approximation, BVA).
 - The BVA is invalid for small Bu regimes, $NH/fL_0 < 1$.
- Introduce new control variables.
 - PV-based balanced variable ($\delta \psi_b$).
 - anti-PV-based unbalanced variable (δp_u).
- $\delta \psi_b$ shows larger vertical scales than $\delta \psi$ at large horizontal scales.
- δp_u shows larger vertical scales than δp_r at large horizontal scales.
- $cor(\delta \psi_b, \delta p_u) < cor(\delta \psi, \delta p_r).$
- Anti-balance equation (zero PV) amplifies features of large horiz/small vert scales in δp_u .
- The scheme is expected to work better with the Charney-Phillips than the Lorenz vertical grid.

Acknowledgements: Thanks to Paul Berrisford, Mark Dixon, Dingmin Li, David Pearson, Ian Roulstone, and Marek Wlasak for scientific or technical discussions. Funded by NERC and the Met Office.

www.met.rdg.ac.uk/~ross/DARC/DataAssim.html

ECMWF flow dependent workshop, June 2007. Slide 14 of 14.

End

ECMWF flow dependent workshop, June 2007.

At large horizontal scales, $\delta \psi_b$ and δp_u have larger vertical scales than $\delta \psi$ and δp_r .

• Expect $\delta \psi_{b} < \delta \psi$ • Expect $\delta p_{u} \sim 0$

(apart from at large vertical scales).

ECMWF flow dependent workshop, June 2007.

6. Diagnostics (cont) – implied covariances from wind pseudo observation tests

ECMWF flow dependent workshop, June 2007. Slide 17 of 14.

Actual MetO transform

