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Topics we discuss in this talk

• The recursive filter technique for simulating a quasi-diffusive process
• The “TRIAD” and “HEXAD” algorithms for anisotropic filtering
• “Blending” refinements to improve continuity and smoothness
• The problem of filter normalization in inhomogeneous cases
• Applications of differential geometry and the “Parametrix” method to 

improving the normalization
• Covariance synthesis by multi-filter superposition in a multigrid

framework
• Analysis error estimation and characterization, and preconditioning
• Analyzing variables with abrupt gradients
• Conclusions
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The recursive filter is an efficient numerical technique for simulating 
diffusion along a grid line. Covariance operators can be constructed with 
it, as is done in NCEP’s Gridpoint Statistical Interpolation (GSI) and 
other assimilation schemes.

The idea is to take a finite-degree Taylor series approximation to the 
Exponential function. Then apply this function to an effective 
Diffusivity*Laplacian*Duration. In finite difference terms, this is a band-
matrix operator. Invert the operator, and you have an approximation to 
the result of diffusion applied for the given Duration. The centered and 
normalized second moment (like squared “radius of gyration”) gives the 
spread or “Aspect Tensor” which, if the Duration is chosen to be a half, 
and the diffusivity is uniform, is simply the Diffusivity itself.

The idea of using a diffusive process to generate a covariance 
contribution is made explicit in the assimilation techniques of Derber and 
Rosati (1989), extended to anisotropic diffusion on the sphere by 
Weaver and Courtier (2001). 

The Recursive Filter
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Examples of vertical sections through 3D covariances generated 
through adaptations of the Desroziers and Riishojgaard methods.
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The general diffusion operation in N dimensions can be formally broken 
down into N line operations applied sequentially (as in a splitting method).
Some of the lines may be oblique in the anisotropic case.

Then the individual line operations which, we recall, take the form of the 
inversions of band-matrix systems, can be solved recursively in two sweeps,
since the symmetric band matrix admits an “L-U” Cholesky decomposition.
(There are minor technicalities involving boundary conditions, but these are 
most conveniently swept away by assuming mirror-reflection conditions at 
boundaries, possibly slightly outside the physical domain of interest.)

Difficulties can arise if the degree of the Exponential-approximating 
polynomial is too high and the aspect/diffusivity tensor too large compared to 
the scale of the grid; the system inverted then becomes ill-conditioned. But 
such a polynomial can always be factored into real-coefficients polynomials 
of degree not exceeding two, and this factorization solves the conditioning 
problem.
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Triad and Hexad Methods

Although a general N-dimensional anisotropic diffusion operator may be broken 
into N sequential oblique operators, the directions cannot all be aligned with the 
grid in general. An attractive alternative is to employ a larger set of directions, 3 
in two dimensions, 6 in three dimensions, such that even the oblique lines do at 
least become generalized grid lines.

This is the essential idea behind the Triad and Hexad methods (and their 
generalizations in higher dimensions).

The best choice for triads involves three alignments whose smallest steps, or 
“generators” form the smallest possible grid triangle. Equivalently, triad 
directions lie parallel to the diameters of a smallest possible grid-hexagon.

(a) (b)
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It is easy to see that, for such a grid hexagon, keeping two vertex-diameters 
fixed leaves two alternatives for the third (always!). The “projection” of the given 
aspect tensor onto the “spreads” of the line operators is essentially a linear one, 
since normalized centered second moments add under pure convolution 
(sequential filters) and approximately so even when the inhomogeneities render 
the convolutions “impure”. But, in general, the three spreads resulting from the 
projection of the desired aspect tensor into any given triad are likely to leave 
one of these spreads negative, which cannot correspond to any sensible 
smoothing or diffusing operator. 

The Triad Algorithm responds to the occurrence of negative spread in a trial 
triad by replacing the offending spread’s direction by that given by the 
alternative diameter that will allow a minimal grid-hexagon to appear. The new 
spread (from a new projection) is then always non-negative, although one of the 
other two spreads will typically have become negative through this transition; in 
that case, the process is iterated until a valid solution (three spreads non-
negative) is found. Such a solution always exists and is unique at each point.
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The Hexad algorithm abides by the same general principle, but now six 
directions are needed to provide the necessary degrees of freedom in the 
symmetric aspect tensor in three dimensional space. Geometry dictates that 
these directions correspond to those of the diameters of the smallest 
skewed grid “cuboctahedron” (a figure with 12 vertices, 6 quadrilateral faces 
and 8 triangular faces.

Again, lattice geometry forces unique rules for the transition between one 
hexad and its alternative, once it is decided which diameter is free to change 
while the remaining five others are kept fixed.
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The triads or hexads and their accompanying spreads will clearly change 
with geographical location in the usual case of an inhomogeneous
covariance. Sequencing the line operations involved among the various 
triads or hexads so that there is no mutual interference of the filters whose 
lines of operation intersect is therefore a nontrivial problem when these 
operations are multi-processed. 

The solution is provided by an idea from abstract algebra. The generators 
of a lattice can be “colored” using the non-vanishing elements of a suitable 
“Galois Field”. The colors form a periodic pattern (the period being some 
prime number) over the generator lattice. For example, every generator of 
a basic triad is a different non-null element of GF(4). In three dimensions, 
the simplest relevant Galois field is GF(8), which provides seven “colors”, 
of which, the generators of any hexad will have six.

Thus, it is enough to perform all operations of each color concurrently, and 
to run through the colors in sequence, to avoid a numerical clash of filters.



10

Early experiments with the Triad and Hexad methods revealed ugly
numerical artifacts in the resulting covariances at places where triad or 
hexad changed. The cause was  an excessive rate of change in the line-
spreads on approaching the transition.

(a)    Basic triad, one smoothing iteration (b)    Basic triad, four smoothing iterations
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The cure involves enlarging the allowed set of smoothing directions at each 
point so that the single triad or hexad can be replaced by an equivalent 
symmetric superposition of triads or hexads that form a “ball” in aspect 
tensor space centered on the original aspect tensor “point”. Again, we 
invoke the (approximate) linearity of spreads to justify this remedial 
measure.

(a)    Blended triads, one smoothing iteration (b)    Blended triads, four smoothing iterations
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The result is the “Blended Triad” and “Blended Hexad”
methods. To accommodate the larger sets of directions needed 
for conflict-free parallel algorithms, we now find that the eight 
non-null elements of GF(9) can be paired up to provide four 
“colors” for the blended triad, while the 26 non-null elements of 
GF(27) pair up to provide the 13 “colors” for a blended hexad.

Details of all these methods are available in Wu et el. (2002, 
MWR), Purser et al. (2003a, b, MWR) and in Purser (2005, 
NOAA/NCEP Office Note 447).
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Normalization

A homogeneous diffusive process in Euclidean geometry and without 
boundaries is easy to normalize whether or not it is isotropic – the final 
function has a standard Gaussian form and the amplitude, for aspect 
tensor A,  will be |2*pi*A|^{-N/2} in N dimensions. Weaver and Courtier 
address the problem in the spherical case. The difficulty occurs when the 
diffusivity varies or the domain is significantly non-Euclidean. At present we 
are using a randomized trace Monte Carlo method, but the cost is
substantial if we want to adapt to a different covariance from one analysis 
time to the next.

In fact, the case of varying diffusivity can be mapped into an equivalent 
problem of uniform and isotropic diffusivity in a non-Euclidean 
(Riemannian) space, albeit with a spatial “capacitance” appearing in the 
transformed diffusion problem. (Capacitance may be thought of as a 
varying gauge of metal forming a thin smoothly curved shell in the 2D heat-
flow analogy.) But what is gained by such an algebraic manoeuvre?
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First, we note that, since we are not simulating “real” diffusion but merely 
taking advantage of a convenient numerical way to generate self-adjoint 
quasi-Gaussian covariance contributions, we are at liberty to choose the 
capacitance in the untransformed problem that anticipates a uniformity of 
this quantity once transformed. The original aspect tensor effectively 
assumes the role of contravariant metric tensor in the transformed problem 
in which diffusivity is unity isotropically. What we gain is that the amplitude 
can now only depend upon the distribution of (intrinsic) curvature of the 
transformed space – a second-derivative of the metric when examined in 
local (Riemann) “normal coordinates”. In a way, we have simplified the 
factors upon which the amplitude can depend by identifying the source of 
the amplitude variation as the curvature of the transformed space.

Note that some choices of aspect tensor distribution, such as those which 
would appear homogeneous in semi-geostrophic space, as suggested by 
Desroziers (1997), will actually solve the normalization by implying a 
transformed space that is still almost flat!
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Differential Geometry and the 
“Parametrix” Method

In the general case, though, the transformation to a Riemannian geometry 
has not made the amplitude estimation problem an easy one. However, 
there does exist a literature on the estimation of solutions to the “Heat 
Kernel” in curved spaces (for example, Rosenberg 1997: The Laplacian on a Riemannian 
manifold, C.U.P.) and one approach, although it can only lead to an asymptotic 
approximation at each point, looks promising.

This approach is the “Parametrix method”.  Normal coordinates are 
constructed to be “as Cartesian as possible locally”; axes are orthogonal 
and the radials through the local origin are geodesics on which distances 
measure true. The idea behind the parametrix method is to represent the 
evolving solution of the diffusion problem as the corresponding Euclidean 
solution in the normal coordinates, multiplied by a modulating function that 
is smooth in “time” and space.
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Then, for sufficiently small “times” we should be able to approximate the 
modulating function in a series of powers of the normal coordinates and 
“time”. The only part of the solution we shall end up being interested in 
is the solution at the origin and at “time” = ½ (when the aspect tensor 
corresponds with the diffusivity). There is a systematic recursive 
algorithm for generating successive approximations in finite powers 
where one order of solution, fed back into original diffusion equation, 
provides the next order of correction.

While, in principle, this process can be continued without limit, in 
practice it rapidly leads to extremely complicated algebra and the 
successive approximations, typical of many asymptotic series, do not 
converge to the true solution for any finite time. Nevertheless, provided 
the original aspect tensor varies sufficiently smoothly and gradually, the 
approximate solutions obtained by this approach should be adequate. 
Most of the algebraic operations involved can actually be reduced to 
forms that lend themselves to mechanization. We give two idealized 
examples of the results obtained from the asymptotic method but only 
give an outline here of some of the steps required for the general case.
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These graphs show the 2D results comparing the asymptotic expansion for 
the amplitude quotient with the true solution in the special case where the 
Gaussian curvature K is uniform. Even out to a curvature of +/- 5 non-
dimensional units, the asymptotic method with a few terms should give a very 
good approximation, as shown. However, the expansion is formally
divergent. The true amplitude quotient is denoted “A”; other graphs show 
asymptotic expansions truncated to the degrees indicated by the superscript.
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Corresponding results in 3D, with uniform sectional curvature, K. But 
now, the asymptotic expansion converges to exp(K/2). For negative 
curvature (hyperbolic geometry) this is the exact solution; for positive 
curvature, there is an error that grows with K.
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An outline of the treatment in the case of general Riemannian geometry 
follows. 

First, we observe that, in normal coordinates we can express the covariant 
metric tensor as a Taylor series (starting with the identity, and with vanishing 
first-order term). The construction of the normal coordinate system, in which 
radials are geodesics measuring true at all distances out, implies that the 
radial vector is an eigenvector, with eigenvalue=one, of both metric tensors 
at every point. This imposes important constraints on all the quadratic, and 
higher, Taylor series coefficients of the metric; these become the celebrated 
“Bianchi identities” (algebraic and differential) when translated into the 
implications for the Riemann curvature tensor. (In fact, it is possible to 
express the array of quadratic Taylor series coefficients for the metric 
directly as simple linear multiples of the Riemann tensor.) 

The Bianchi, and other symmetries, restrict the actual number of degrees of 
freedom at each degree of the Taylor series. For example, in 3D, we might 
expect the Taylor series for a symmetric metric tensor (6 components) to 
require 6*6=36 independent coefficients at second degree, but only 6 are 
actually needed. At 3rd degree, the Bianchi differential identities come into 
play to keep the independent coefficients at only 15.
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The second derivatives of the covariant metric (in normal coordinate) provide 
the Riemann tensor. Successive covariant differentiations of the Riemann 
tensor produce new tensors which can be equated to tensorial expressions that 
involve only the Taylor coefficient arrays of the metric tensor up to a finite 
degree. However, it is the origin-evaluated derivatives of the metric tensor –
i.e., these same Taylor coefficients, that force the successive terms in the 
parametrix method for approximating the modulating function relating the non-
Euclidean solution of the diffusion problem to its standard Euclidean 
counterpart.

It therefore becomes possible to express the successive terms in the series 
expansion of the amplitude adjustment quotient directly in terms of the 
Riemann tensor and its first few covariant derivatives. These latter quantities 
are straightforward to evaluate on the original grid and, being tensorial, are 
therefore relatively easy to convert to normal coordinate representations if 
needed. However, contracted versions of the curvature: the “Gaussian 
curvature” in 2D; the “Ricci curvature” in 3D; should make it more convenient 
to express the approximations to the amplitude quotients directly in terms of 
these simpler quantities.
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Covariance synthesis by multi-filter 
superposition in a Multigrid framework

Although discussion up to this point has focused on the technicalities 
involved in the construction of Gaussian contributions to the covariance, 
we should not ignore the fact that the simple quasi-Gaussian that results 
from a single application of a diffusion-simulating filter is probably not a 
very realistic model of background uncertainty by itself.

If we can afford to construct a superposition of such quasi-Gaussians, 
each at a different scale and relative amplitude, then we can sculpt a more 
promising and realistic covariance shape. (Actually, it is better to use this 
approach to construct the asymmetrical square-root of the covariance, as 
this way, it becomes much easier to ensure the final result is positive 
definite.)



22

The computational expense of applying the recursive filters repeatedly, 
but at different scales, could be greatly mitigated by adopting a 
multigrid strategy. Then, filtering at the coarse scales is done (cheaply) 
on only a correspondingly coarse grid. The contribution is interpolated 
to the next finer grid and added to a quasi-Gaussian contribution 
appropriate to this scale, and so on. Of course, the quantity being 
smoothed must also be carried consistently up this hierarchy in the first 
place, using the adjoint of the grid-refinement interpolators.

This is another area of covariance filter development in which we are 
beginning to make some headway, with preliminary tests in 2D.

This synthesis is closely related to discrete inverse Laplace 
transformation, as can be verified immediately in the case where the 
contributions are true Gaussians.

The method therefore enables a vast range of covariance shapes to be 
synthesized, and suggests that we might even approximate the 
analysis error covariance this way.
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Analysis error estimation and characterization.
Preconditioning

These topics are somewhat speculative at present and it may eventually 
turn out that the kinds of filters we have discussed are not adequate to 
characterize the analysis error structure. The problem is that, while it 
seems reasonable to represent a background error covariance in a way 
that implicitly assumes that, locally, it could be characterized simply by 
its power spectrum, the degree of spatial inhomogeneity in a typical 
analysis error covariance, so strongly dominated by equally 
inhomogeneous observations, make it seem unreasonable that the same 
kind of characterization of the analysis error covariance would work. 

However, even with its many imperfections, it would be at least 
informative to find out how well a filtering approach to representing 
analysis covariances might be made to work, once the necessary drastic 
simplifications in the measurement precision operators are made.
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In classical data assimilation theory, we understand the analysis precision 
to be simply the sum of the background precision and the measurement 
precision. If observations were spatially homogeneous, we could ascribe to 
them a local error power spectrum and obtain the corresponding analysis 
power spectrum fairly directly. 

We ask: with realistic observation distributions, can we usefully impose this 
assumption anyway, and obtain anything of value from the resulting 
analysis covariance? 

If so, filters might be useful for geographically smoothing a locally valid 
representation of each observation type’s H^T*R^{-1}H operator to cause 
enough overlap among discretely distributed measurements of the same 
type to allow their measurement operators to look homogeneous locally 
and to make possible a local assessment of the density of such data. 
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For example, a scatter of point-observations of the analysis 
variable would then give (locally) a white-noise distribution for the 
measurement precision. A horizontal scatter of satellite radiance 
measurements would, however, result in a very different 
appearance for the vertical part of the local precision spectrum, 
with a bell-shaped peak concentrating the precision at only the 
small vertical wavenumbers (the squared-absolute magnitude of 
the Fourier transform of the “typical” transmittance function). Each 
of these two sets of data would have, locally, a different spectral 
impact on the analysis that could be estimated, and hence 
represented by a combination of filters.

If it is possible to obtain a reasonable model of the analysis error 
covariance in terms of a filter, then that same filter might be a 
useful preconditioner for the analysis itself.

Also, it would provide a valuable tool for normalizing the spread of 
ensemble members in a way that reflects the influence of new 
data, but sidesteps the expense of adding an assimilation to each 
ensemble component.
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 IN SITU MEASUREMENTS OF THE CONTROL VARIABLE

     <- Spectral background covariance, B
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     <- G = 1-sqrt(A/B) and
         Ĝ  = sum { Gaussians } (blue)

     <- Gaussians (half-curves)
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 IN SITU MEASUREMENTS OF THE DERIVATIVE

     <- Spectral background covariance, B
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     <- G = 1-sqrt(A/B) and
         Ĝ  = sum { Gaussians } (blue)

     <- Gaussians (half-curves)
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 IDEALIZED RADIANCE MEASUREMENTS OF THE DERIVATIVE

     <- Spectral background covariance, B
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Analyzing variables with abrupt gradients

Earlier, we discussed the problem of adequately normalizing the 
amplitudes of filters when the aspect tensors vary gradually and smoothly 
with location, and mentioned that asymptotic methods show promise in 
performing this task efficiently. 

In cases where the covariances change abruptly, the parametrix method 
will be of no use. However, some abrupt changes are tied to the changes 
of topographic parameters, such as elevation, or the land/water distinction.

NCEP now carries out an operational 2D “Real-Time Mesoscale Analysis”
(RTMA) of surface analyzed parameters over the US where such 
topographically-tied covariance changes do occur (De Pondeca and co-
authors 2007, 22nd Conf. WAF/18th Conf. on NWP, Park City, UT, AMS ). One approach 
we are giving some attention is based on a variant of Riishojgaard’s (1998, 
Tellus.) method. 
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The analysis could be carried out once for an elevation (say) that is 
somewhat higher than the local average obtained by heavily smoothing 
the true elevation, so that the covariances on this hypothetical surface can 
themselves now be taken to be smooth. Another, completely independent 
analysis is performed at a parallel smoothed elevation that is somewhat 
lower than the actual local average. The extra vertical interpolations are 
computed in accordance with the prescribed part of the covariance which, 
as in the Riishojgaard method, depends upon the extra variable (in this 
case, elevation). Thus the observations are only permitted to influence the 
respective analyses in proportion to how close their actual elevations are 
relative to the nominal elevations of the two hypothetical surfaces. 

The final analysis is similarly the interpolation between the two surfaces’
analyses to a target at the true elevation at each geographical position. 
The result is expected to give realistically rapid changes in surface 
analyzed variables at places where the topography changes rapidly, while 
the underlying covariances seen by the generating filters remain perfectly 
smooth.

It might be possible to extend these ideas to 3D if the duplicated analysis 
domains are confined to only the lowest levels.
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Conclusions

The numerical grid-smoothing technique of “recursive filters” has shown 
itself to be a versatile tool for the efficient construction of approximate 
models of background error covariances. In combination with the “Triad”
and “Hexad” methods, we can now generate smooth quasi-Gaussian 
covariance contributions with arbitrary degrees of anisotropy. Asymptotic 
methods based on differential geometric ideas are being developed and 
tested in the GSI at NCEP to make the normalizaton of these filters in 
inhomogeneous cases more accurate and efficient, while multigrid
methods are being developed to facilitate the efficient construction of 
covariances having more general profile shapes than can be obtained 
with only a few Gaussians.

Finally, we have discussed some more speculative ideas concerning 
how future developments of these techniques might address the 
problems of analysis error characterization, preconditioning and
covariance modelling where abrupt changes occur.


