The Interactive Ensemble Coupling Strategy for Quantifying ENSO Predictability

Ben Kirtman
University of Miami - RSMAS
Center for Ocean-Land-Atmosphere Studies (COLA)
Why Do We Use Ensembles?

- Quantify Uncertainty Due to Uncertainty in Initial Condition
 - Perturbed Initial States
- Quantify Uncertainty Due to Uncertainty in Model Formulation
 - Perturbed Model Formulation (Multi-Model)

- Understanding How Weather and Climate Interact
 - Why Climate Modelers Should Worry About the Weather
What if Your Coupled Model Has Incorrect Weather Statistics?

- ENSO Prediction Problem
- Western Pacific Problem

- Introduce the Interactive Ensemble Coupling Strategy
Weather - Climate Interactions

• One-way air-sea interactions (stochastic atmosphere, aka weather noise, forces ocean)
 – Ocean = thermodynamic “red filter”
 -- Hasselmann (1976)
 – Ocean-dynamics: preferred low frequency time scale(s)

• One-way air-sea interactions (stochastic ocean forces atmos.)
 – Tropical instability waves
 – Kuroshio current extension

• Two-way air-sea interactions
 – (Stable) coupled feedbacks + weather noise (MJO, WWB)
 – (Stable) coupled feedbacks + weather noise + dynamics
 – Unstable coupled feedbacks + weather noise + dynamics
Weather Noise as a Pacemaker for Climate: ENSO Example

1. Simplified “noiseless” coupled model (a la Z-C)
2. Random initial states
3. Identical prescribed idealized weather noise
How Should Weather Noise be Defined?

• **Use ensemble realizations**
 – Ensemble mean defines “climate signal”
 – Deviation about ensemble mean defines weather noise
 – Climate signal & weather noise are not necessarily independent

• **Examples:**
 • Atmospheric model simulations with prescribed SST
 • Climate change simulations
Different SST → Different tropical atmospheric mean response
Different characteristics of atmos. noise

SST Anomaly JFMA1998

SST Anomaly JFMA1989

Tropical Pacific Rainfall (in box)
Modeling Weather & Climate Interactions

- Previously, this required ad-hoc assumptions about the weather noise and simplified theoretically motivated models
- We adopt a coupled GCM approach
 - Weather is internally generated
 - Signal-noise dependence
 - State-of-the-art physical and dynamical processes

⇒ Interactive Ensemble
Interactive Ensemble Approach

Ensemble of N AGCMs all receive same OGCM-output SST each day

AGCM_1
Sfc Fluxes_1

AGCM_2
Sfc Fluxes_2

\ldots

AGCM_N
Sfc Fluxes_N

average (1, \ldots, N)

Ensemble Mean Sfc Fluxes

OGCM receives ensemble average of AGCM output fluxes each day

SST

OGCM
Interactive Ensemble

- Ensemble realizations of atmospheric component to isolate “climate signal”
 - Ensemble mean = Signal + ε
- Ensemble mean surface fluxes coupled to ocean component
 - Ensemble average only applied at air-sea interface
 - Ocean “feels” an atmospheric state with reduced weather noise

850 mb Zonal Wind Standard Deviation

M = number of atmospheric ensemble members
Interactive Ensemble

Control SSTA
Unstable Coupled Feedbacks

Ocean noise?
Equatorial SSTA Variance

- One Atmos + One Ocean
- Six Atmos + One Ocean
- Six Atmos + Six Ocean
Understanding Forecast Skill

• What is the Overall Limit of Predictability?
• What Limits Predictability?
 – Uncertainty in Initial Conditions: Chaos within Non-Linear Dynamics of the Coupled System
 – Uncertainty as the System Evolves: External Stochastic Effects
• Model Dependence?
 – Model Error
CFSIE - Reduce Noise Version (interactive ensemble) of CFS
CFSIE - Reduce Noise Version (interactive ensemble) of CFS

RMS(Obs) * 1.4

CFSIE RMSE

CFS Spread

CFS RMSE

CFSIE Spread

CFSIE - Reduce Noise Version (interactive ensemble) of CFS
Worst Case: Initial Condition Error (A+O) + Model Error (WX)

Best Case: Initial Condition Error (A) + No Model Error (WX)

Better Case: Initial Condition Error (A) + Model Error (WX)
1. Eastern Pacific - Ocean Weather Noise - Tropical Instability Waves?
2. Enhanced Variance in Western Pacific - Not Enough Weather?
Western Pacific Problem

• **Hypothesis:** Atmospheric Internal Dynamics (Stochastic Forcing) is Occurring on Space and Time Scales that are Too Coherent
 ⇒ Too Coherent Oceanic Response
 ⇒ Excessive Ocean Forcing Atmosphere
 ⇒ **Test:** Random Interactive Ensemble
Ensemble of \(N \) AGCMs all receive same OGCM-output SST each day

\[\text{AGCM}_1 \]
\[\text{Sfc Fluxes}_1 \]

\[\text{AGCM}_2 \]
\[\text{Sfc Fluxes}_2 \]

\[\ldots \]

\[\text{AGCM}_N \]
\[\text{Sfc Fluxes}_N \]

Average \(N \) members' surface fluxes each day

Average \(1, \ldots, N \)

Ensemble Mean Sfc Fluxes

OGCM receives ensemble average of AGCM output fluxes each day

\[\text{SST} \]

Interactive Ensemble Approach
Random Interactive Ensemble Approach

Ensemble of N AGCMs all receive the same OGCM-output SST each day.

OGCM receives output of a single, randomly-selected AGCM each day.

Randomly select 1 member’s surface fluxes each day.

OGCM receives output of single, randomly-selected AGCM each day.
Nino3.4 Power Spectra

Increasing Stochastic Atmospheric Forcing Increase the ENSO Period
Nino34 Regression on Equatorial Pacific SSTA
Contemporaneous Latent Heat Flux - SST Correlation

Observational Estimates

Control Coupled Model

Increased "Randomness" Coupled Model

Random Interactive Ensemble: Increased the Whiteness of the Atmosphere forcing the Ocean
Random (Stochastic) Thoughts

• Interactive Ensemble Strategy for Quantifying Role of Stochastic Processes in Climate Variability

• Initial Condition Uncertainty is “Largest” Contributor to Loss of Predictability
 – Stochastic Processes also Important

• To Get the Climate Right Must Get the Weather (Statistics) Right
 – Seamless Prediction