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OUTLINE / SUMMARY

 OBJECTIVE OF ENSEMBLE FORECASTING
— GENERATE FINITE SAMPLE OF PLAUSIBLE SOLUTIONS

« NCEP ENSEMBLE FORECAST SYSTEMS
— SEASONAL
— GLOBAL
— REGIONAL
— HIGH IMPACT

« COMPONENTS OF ENSEMBLE FORECASTING

— INITIAL PERTURBATIONS
* Interface with DA

— MODEL-RELATED PERTURBATIONS
* Interface with numerical modeling

— STATISTICAL CORRECTIONS
» Bias correction — Correcting lead time dependent systematic errors
« Downscaling — No forecasting involved

— APPLICATIONS
» Decision Support Systems



OBJECTIVE OF ENSEMBLE FORECASTING

Background

Direct computation of analytical / continuous forecast pdf not achievable
Louiville egs. excessively expensive

Substitute goal

Generate finite sample of solutions representing underlying forecast pdf
Likelihood of solutions (equal or not equal) must be known to estimate pdf
Constraints
Maximize statistical resolution
Narrow pdf as much as possible while maintaining
Provide good statistical reliability
Realism/fidelity of solutions AND/OR
Statistical corrections



WHAT'S NEEDED TO ACHIEVE GOAL?

Estimate & sample initial pdf
Dynamically conditioned perturbations
Link with DA
Represent model related uncertainty
Consider each model component
Link with numerical modeling
Statistically correct ensemble output

Remove lead-time dependent bias
How large sample do we need?

Downscale bias-corrected forecasts
Relationship between high & low-res analysis fields OR
LAM

Apply statistically corrected ensemble output
Inter / extrapolate ensemble data for continuous pdf
Drive downstream applications with ensemble trajectories



NCEP ENSEMBLE SYSTEMS — NOV

. 2007

SYSTEM/

HIGH IMPACT

COMPONENT SEASONAL GLOBAL REGIONAL (Under design)
GFS+MOM3 ETA (10), RSM (5),
Model Coupled model GFS WRF(2*3) Relocatable WRF
Initial uncertainty Lagged ET with Rescaling Breeding ?
Boundary_ None Fixed SST From global From regional
perturbations ensemble ensemble
Model diversity None None Mult. conv. Yes
schemes
Stochastic physics None None (Planned) None ?
Tropic. storm spec. None Relocation None Hurricane WRF
: 03, 09, 15, 21
Schedule Twice/day 00, 06, 12,18 UTC 1oUTC On demand
. : T62L64 (atm), 1/3-
Spatial resolution / T126L28 (d0-d16) i )

Output freq. ;ad”?/g (ocean), ~90km 6, hrly 32-45 km, 3 hrly 5-10 km, 1 hrly
Control member(s) Yes Yes (hi-lo) Yes (5) Yes
Perturbed members Lagged 20 16+5 ?

Forecast length 10 mos 16 days (384 hours) 87 hrs 6-12 hrs
Based on 25 vrs Bias correction Bias correction
Post-processing : y (Recursive filter, (Recursive filter, ?
hindcasts
all members) each member
Implementation 2004 March 27th 2007 Nov. 2007 20107

Thurs. talk




NCEP CLIMATE FORECAST SYSTEM (CFS)

Lagged scheme twice daily
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CFS 500hPa forecasts and analysis at 20KN,1830E
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NORTH AMERICAN ENSEMBLE FORECAST SYSTEM

International project to produce operational multi-center ensemble

products

Combines global ensemble forecasts from Canada & USA
40 members per cycle, 2 cycles per day from MSC & NWS

6-hourly output frequency
Forecasts out to 16 days

Generates products for
Weather forecasters
E.g., NCEP Service Centers (US NWS)

Specialized users
E.g., hydrologic applications in all three countries

End users

The National Oceanic and Atmospheric Administration
of the United States,

The Meteorological Service of Canada and
The National Meteorological Service

of Mexico

Recognizing the importance of scientific and technical infemafiona!
cooperation in the field of metearology for the development
of improved globai forecast models;

Neting the significant infemational cooperafi
implement an operstional ensemb

The signatovies, heraby inaugurate fhe
Merth Amerizan Ensemblz Forscast System
at Camp Springs, Maryiand, US4, on this
16" Day of Movember 2004,

E.g., forecasts for public distribution in Canada (MSC) and Mexico (NMSM)

Operational outlet for THORPEX research using TIGGE archive
Prototype ensemble component of THORPEX Global Interactive Forecast

System (GIFS)




NAEFS CONFIGURATION

July 2007
NCEP CMC
Model GFS GEM
Initial uncertainty ET with Rescaling EnKF
Model diversity None Yes
Stochastic physics None (Planned) Yes
Tropical storm specif. Relocation None
Daily frequency 00, 06, 12, 18 UTC 00 and 12UTC
, T126L28 (d0-d16) (d0-d16)
Resolution ~90km ~1.0degree
Control Yes Yes

Ensemble members

20 for each cycle

20 for each cycle

Forecast length

16 days (384 hours)

16 days (384 hours)

Post-process

Bias correction
for ensemble mean

Bias correction
for each member

Last implementation

March 27t 2007

July 10t 2007
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Reliability of SREF21-based Probabilistic Forecasts
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HIRES Window 2007 Upgrade
Domain Size Changes

Current Large & Small Domains New Large Domains
5.2 km for WRF-NMM 4.0 km for WRF-NMM

5.8 km for WRF-ARW 5.1 km for WRF-ARW

Small domain size is unchanged




SYNERGY BETWEEN DA & ENSEMBLE FORECASTING

Analysis error variance

DA Objective regarding initial conditions (Output)

— Reduce growing errors
— Eliminate non-growing errors

DA requirement regarding forecasting (Input)

— Plausible model trajectories (on attractor)
— Associated forecast error covariance estimate

Ensemble forecasting objective (Output)

— Capture forecast error covariance

Ensemble forecasting requirement (Input)

— Analysis error variance

90UBIIBAOD
10148 1Se28.10



SYNERGY BETWEEN DA & ENSEMBLE FORECASTING - 2

* For best DA/EF performance
— Ensemble must capture expanding perturbations on slow manifold =>

« Use breeding concept to generate ensemble

— Introduce orthogonalization (Ensemble Transform)
« Maximizes efficiency

— Use simplex transformation
» Centers perturbations around unperturbed analysis
» Provides temporal consistency in perturbations (series of perturbed analyses)

— Rescale perturbations
« Sets initial variance according to analysis error estimate
— Needed if ensemble membership is limited

« Couple with best available DA scheme
— DA provides analysis error variance to EF
— EF provides forecast error covariance to DA

 Ensemble-based DA methods (NOAA THORPEX work)

— Must be based on same principles
« 2-way interactions tuned simultaneously



Bred Vector Ensemble Transform Bred VVector

(Former system) (Current system)
Rescaling P1 forecast Rescalin

ANL > ANL >
P3 forecast -
_ _ _ P4 f t
=10 =t =t tzwoﬂ t=tl t=t2
P#, N# are the pairs of positive and negative Ensemble Transform: P1, P2, P3, P4 are

P1 and P2 are quasi-independent vectors orthogonal vectors (ET)

Geographically dependent rescaling *No pairs any more

Simplex Transormation: Centralizes perturbations
vectors (sum of all vectors are equal to zero)

Geographical Rescaling: Initial perturbation
variance representative of analysis error variance

v

ANL

Wel et al. 2006, 2007



6-HOUR BREEDING CYCLE WITH ET / RESCALING

! 00Z ET / Rescaling

6hrs 16-day forecast

Members 1-20
21-40
41-60
61-80

v 06Z ET /Rescaling

16-day forecast

Members 21-40

12Z ET / Rescaling

<

16-day forecast

Members 41-60

v 18Z ET/Re-scaling

Wel et al. 2006, 2007 > 16-day forecast
Members 61-80 > >




PROPERTIES OF BRED/ET/SIMPLEX/RESCALED
PERTURBATIONS

Flow dependent growth
— Breeding
« Support DA goal of reducing growing errors
Orthogonal
— ET
« Efficiently spans growing subspace
Centered on analysis
— Simplex transformation
» Best performance
Temporally consistent

— Simplex transformation

» Important for wave, land surface etc ensembles where perts depend on the
history

Reflective of analysis uncertainty

— Rescaling
» Needed to improved forecast error covariance estimates



ESTIMATING ANALYSIS ERROR VARIANCE

* Current version of GSI does not provide explicit estimate

 How to produce case dependent analysis error estimates?

— Courtier & Fisher 1995
» Add-on feature to 3DVAR provides GSlI-specific approximation
— Statistically convert estimates for analysis variables

— Inter-comparison of analyses from multiple centers
» Default estimate (not GSI-specific)

» Use case-dependent 3D analysis error estimate

— In total energy norm in
« Ensemble Transformation as norm
» Geographical rescaling as a mask



Assessment of model-related errors

SYNERGY BETWEEN NUMEREICAL MODELING &
ENSEMBLE FORECASTING

Numerical modeling community’s objective (Output)
— Realism / fidelity of simulations

« Numerical modeling community’s requirement (Input)
— Reduction of forecast uncertainties =
Q)
=
«Q
« Ensemble forecasting objective (Output) S,
— Assessment of forecast uncertainties ‘;E
o)
. _ »

« Ensemble for ting r irement (Input)

— Model related uncertainties

a|quiasua Jeaul|-UoN



SYNERGY BETWEEN NWP MODELING & ENSEMBLE - 2
* For best NWP/EF performance

— Ensemble must capture all model related uncertainties at their origin
» Otherwise uncertainty cannot be traced
— From origin (particular model problem)
— To destination (particular forecast aspect)

New NWP paradigm

« Systematically assess uncertainty in every component of NWP models
— Prioritize work according to expected impact on ensemble

« Reconstruct model components so they can simulate uncertainty

— Stochastic effect of truncation on resolved scales, in
« Space (Subgrid-scale dynamics)
« Time (Numerical accuracy)
» Physics (Effect of parameterizations)
« Etc

 Single model capable to (closely) reproduce nature with
— Certain space/time configuration

Alternative

« Use of multiple forms/versions of models

— Theoretically unappealing
» Finite number of unconnected imperfect replicas of nature



REPRESENTING MODEL RELATED UNCERTAINTY:
A STOCHASTIC PERTURBATION (SP) SCHEME

General Approach: Add a stochastic forcing term  Goal: Represent effect of unresolved processes

into the tendencies of the model eqgs

Strategy: Generate the S terms from (random)

linear combinations of the conventional

_ perturbation tendencies.
Desired Properties of Forcing

1. Applied to all variables

2. Approximately balanced

3. Smoothly varying in space and time

4. Flow dependent

5. Quasi-orthogonal
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SYNERGY BETWEEN STATISTICAL POSTPROCESSING &
ENSEMBLE FORECASTING

« Stat Post-processing Objective (Output)
— Calibrated pdf

o Stat Post-processing requirement (Input)
— NWRP forecasts

« Ensemble forecasting objective (Output)
— Sample of trajectories

sal0)oslen
a|qwasu]

Statistical calibration

« Ensemble forecasting requirement (Input)
— Statistical reliability




SYNERGY BETWEEN STATISTICAL POSTPROCESSING &
ENSEMBLE FORECASTING - 2

For best EF/SPP performance
— Fully couple EF & SPP

Use Bayesian estimator to optimally combine
— Prior (climate cdf)

— Ensemble forecast information
« Raw trajectories
» Joint sample of ensemble and observed trajectories (error statistics)

Forecast cdf bias correction on model grid (30-120 km)
— How important this step is (perfect ensemble assumption good)?
— How large sample is needed?

Downscaling to fine grid (~5 km)

— Based on relationship between coarse and fine resolution analysis fields
* No hind-casts needed!



Fcst: 24hr Ensemble Mean & Bias Before/After Downscaling 10%

2m Temperature

- NCEP Ensembla Mean Forecast [ eontaur, K }
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RTMA Region 2m Temperature
Valid Time : 2007093000

Impact of bias correction ( vs green)issmall (hrs)

— Compared to downscaling (green vs. red, days)
Hires adds useful info (blue vs. , up to 1 day)
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2m Temperature: Continuous Ranked Probability Score (CRPS)
Average for 20070212 to 20070404
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Preliminary results:

=*Major improvement in skill of
fine-scale forecasts: Downscaled &
bias-corrected ensemble forecasts
have significant improvements
compared with raw & calibrated
forecast for all lead time
(downscaled 5+day forecast as
skillful as raw 6-hr forecast)

= 10% weighting is better than 2%
and 5% weighting in short range.
~30% improvement with 10%
weighting for dO-d4. The 2%, 5%
and 10% weighting curves are close
for long range. Will add more high
weights for comparison.



User relevant processing

SYNERGY BETWEEN PRODUCT GENERATION &

ENSEMBLE FORECASTING

Product generation Objective (Output)

— Any user product

Product generation requirement (Input)

— Single value estimate of atmospheric condition

Ensemble forecasting objective (Output)

— “Forcing” trajectories

Ensemble forecasting requirement (Input)

— User relevant information

sal0)oslen
a|qwiesu]



SYNERGY BETWEEN PRODUCT GENERATION &
ENSEMBLE FORECASTING - 2

 For best EF/PG performance
— Fully couple EF & PG

« Use each ensemble trajectory of weather to

— Simulate corresponding user relevant events
» Powerful quantitative assessment of expected effect of weather on user operations

— Decision Support System must be based on quantitative analysis of results

e Alternatives

— Various types of qualitative analyses can also be useful in
« Complex situations that are hard to quantitatively assess

— Related to summary statistics from ensemble can be used



Experimental Medium-range Ensemble Streamflow Forecasts
Based on Coupled GFS-Noah Ensemble Runoff Forecast
Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Ensemble Streamflow Forecast
Two Possible Approaches

Atmospheric
Model (GFS)

\

c\p\xa"‘o‘\

Fluxes

Optional
bias correction

P(e/

Land Surface
Model (Noah)

Runoff
(ensemble)

River Routing I\/Iodell

Streamflow
(ensemble)

Post Processor

1 Final Products
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Potomac River, Washington DC
A Medium Sized Basin, May 4th

----- GEFS members
————— GEFS control
----- GFS high resolution
----- NLDAS
0 2 4 6 8 10 12 14 16
Lead Time (days)
23000 ----E----I\/Iissfissippi-é-River-,-é-\/icks’cé)urg-MS ---------- ------------ -----
=l - AlLarge Sized Basin, May 4th------ SRR o
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Summary of Results

» Distributed river routing ensemble system
(coupled GEFS, Noah and the river routing
model used) works well with the variability in
the ensemble streamflow forecasts being of the
same order of magnitude as the error in the
mean of the ensemble

» For large basins, the ensemble streamflow
forecasts appear to capture well the variations
in the NLDAS analysis of streamflow

=  For medium- and small-sized basins, a serious
under-dispersion is present in the spread of the
ensemble streamflow forecasts. This is likely
due to a lack of sufficient variability in the
precipitation forcing on the scale of the chosen
river basin

Dingchen Hou
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OUTLINE / SUMMARY

 OBJECTIVE OF ENSEMBLE FORECASTING
— GENERATE FINITE SAMPLE OF PLAUSIBLE SOLUTIONS

« NCEP ENSEMBLE FORECAST SYSTEMS
— SEASONAL
— GLOBAL
— REGIONAL
— HIGH IMPACT

« COMPONENTS OF ENSEMBLE FORECASTING

— INITIAL PERTURBATIONS
* Interface with DA

— MODEL-RELATED PERTURBATIONS
* Interface with numerical modeling

— STATISTICAL CORRECTIONS
 Bias correction — Correcting lead time dependent systematic errors
* Downscaling — No forecasting involved

— APPLICATIONS
« Decision Support Systems
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NAEFS BENEFITS

Improves probabilistic forecast performance

Earlier warnings for severe weather
Lower detection threshold due to more ensemble members
Uncertainty better captured via analysis/model/ensemble diversity (assumed)

Provides Seamless suite of forecasts across
International boundaries
Canada, Mexico, USA
Different time ranges (1-14 days)

Saves development costs by

Sharing scientific algorithms, codes, scripts

Accelerated implementation schedule

Low-cost diversity via multi-center analysis/model/ensemble methods
Exchanging complementary application tools

MSC focus on end users (public)

NWS focus on intermediate user (forecaster)

Saves production costs by
Leveraging computational resources
Each center needs to run only fraction of total ensemble members
Providing back-up for operations in case of emergencies

Use nearly identical operational procedures at both centers to provide basic products
Offers as default basic products based on unaffected center’'s ensemble




NAEFS HISTORY & MILESTONES

February 2003, Long Beach, CA

NOAA / MSC hl?_h level agreement about joint ensemble research/development
work (J. Hayes, L. Uccellini, D. Rogers, M. Beland, P. Dubreuil, J. Abraham)

May 2003 Montreal (MSC)
1st NAEFS Workshop, planning started

November 2003, MSC & NWS

1st draft of NAEFS Research, Development & Implementation Plan complete
May 2004, Camp Springs, MD (NCEP)

Executive Review
September 2004, MSC & NWS

Initial Operational Capability implemented at MSC & NWS

November 2004, Camp Springs

Inauguration ceremony & 2" NAEFS Workshop
Leaders of NMS of Canada, Mexico, USA signed memorandum
50 scientists from 5 countries & 8 agencies

May 2006, Montreal
319 NAEFS Workshop

May-Oct 2006, MSC & NWS

1st Operational Implementation
Bias correction
Climate anomaly forecasts

2007-2008, MSC, NWS

Follow-up implementations
Improved and expanded product suite




Outliers: H500, day 6 forecast, 20041002

Without SP
large number of outliers with
negative and positive forecast bias

Nermalizad dstanca (shoded) of anulysie from ane mean [p-ur[E"kz contours)
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With SP
the number of outliers is
significantly reduced

Normalized dstance (shoded) of analysia from ane mean [p-unsz cantours)
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NCEP ESMF GEFS Ar—
CONCURRENT INTEGRATION [Main Driver

v

Cpl_Initialize

A 4

Cpl Run

G _1I --- GFS Initialize
G_R - GFS Run Cpl Run

G _F --- GFS Finalize

END



Experimental Medium-range Ensemble Streamflow Forecasts
Based on Coupled GFS-Noah Ensemble Runoff Forecast
Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Background:

Land Surface component of NCEP coupled
weather/climate prediction models (Mitchell et al,
2005) facilitates streamflow forecasts from theses
coupled systems.

River routing experiment in analysis mode of the
NLDAS project (Lohmann et al, 2004 ) revealed
potential extension to river flow forecasts in
coupled prediction models.

Existence of uncertainty in initial conditions,
model structure and land surface forcing needs to
be considered with an ensemble approach.

Purpose:

Demonstrate feasibility of gridded medium-range
river flow forecast in operational NCEP Global
Ensemble Forecast System (GEFS).

Develop strategy to represent uncertainties.

Extent the concept to the seasonal range by
utilizing ensemble coupled CFS/Noah prediction of
runoff in the future.

General Strategy:

NLDAS stream flow analysis used as initial
condition and verification;

Extension to global domain in mind with domestic
and international users;

Hind cast data set to be generated for post
pressing.

Ensemble Streamflow Forecast
Two Possible Approaches
and Uncoupled
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Representing Model Related Uncertainty
A Proposed Stochastic Perturbation Scheme

General Approach: Adding a stochastic
forcing term in to the tendencies of the
model equations.

Assumption: The perturbations (difference
between ensemble members and the
control) in the conventional tendencies
provide a sample of realizations of the
additional stochastic forcing S.

Strategy: Generate the S terms from
(random) linear combinations of the
conventional perturbation tendencies.

Desired Properties

1. Forcing applied to all variables

2. Approximately balanced

3. Smooth variation in space and time
4. Flow dependent

5. Quasi-orthogonal

Expected Results

Increased spread
Reduced systematic error
Improved probabilistic forecast
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Statistics: Ensemble Spread and Error of Ensemble Mean
Increased Spread, Reduced Mean Error (ME)
Reduced Mean Absolute Systematic Error (MASE)
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Skill Scores

Comparison with Post-Processing (PP)
RPSS: Improved in both cases (SP and PP)
SP is more effective in week 2 forecast
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Experimental Medium-range Ensemble Streamflow Forecasts
Based on Coupled GFS-Noah Ensemble Runoff Forecast
Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Ensemble Streamflow Forecast
Two Possible Approaches
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HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

Proposed solution: Dynamical sampling in growing sub-
space — ET / ETKF

Link with DA (GSI — ET)

* Need collaboration between DA and ensemble teams.

» Take error variance from GSI to specify ensemble perturbations

* Feed back information from ensemble into background error covariance.
» ET provides series of perturbed analyses consistent in time

— Important for wave, land surface ensembles etc where perts depend
on the history.

Ensemble-based DA — ETKF

« Same ensemble principles, except 2-way interactions tuned
simultaneously.



Unified EFS and DA

EFS and DA systems must be consistent for best
performance of both.

SSI/GSI currently provides best estimate of analysis, GSI will be
used to derive analysis uncertainties (error variance) for EFS.

EFS produces flow dependent forecast (background) error
covariance to be tested in GSlI later.

A Hybrid DA-EFS System

Best analysis error variances (diag(P?))

GSl| ———————— EFS

: f
Accurate forecast error covariance P or B




SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT'S KNOWN — FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION

THEORETICAL UNDERSTANDING - THE MORE ADVANCED A SCHEME IS
(e. g., 4DVAR, Ensemble Kalman Filter)
» The lower the overall error level is
» The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES -
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
 Statistical approach (dynamically growing errors neglected)
» Selected estimated statistical properties of analysis error reproduced
* Baumhefner et al — Spatial distribution; wavenumber spectra
« ECMWEF — Implicite constraint with use of Total Energy norm
* Dynamical approach — Breeding cycle (NCEP)
» Cycling of errors captured
 Estimates subspace of dynamically fastest growing errors in analysis
» Stochastic-dynamic approach — Perturbed Observations method (MSC)
* Perturb all observations (given their uncertainty)
* Run multiple analysis cycles
» Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES — SEVERAL OPEN QUESTIONS

« RANDOM SAMPLING - Perturbed observations method (MSC)
— Represents all potential error patterns with realistic amplitude

— Small subspace of growing errors is well represented

— Potential problems:
» Much larger subspace of non-growing errors poorly sampled,
* Yet represented with realistic amplitudes

« SAMPLE GROWING ANALYSIS ERRORS - Breeding (NCEP)
— Represents dynamically growing analysis errors
— Ignores non-growing component of error

— Potential problems:
» May not provide “wide enough” sample of growing perturbations
 Statistical consistency violated due to directed sampling? Forecast consequences?

« SAMPLE FASTEST GROWING FORECAST ERRORS - SVs (ECMWF)
— Represents forecast errors that would grow fastest in linear sense
— Perturbations are optimized for maximum forecast error growth

— Potential problems:
» Need to optimize for each forecast application (or for none)?
 Linear approximation used
* Very expensive
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ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

« DATA ASSIM: Growing errors due to cycling through NWP forecasts
« BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

— Sample subspace of most rapidly growing analysis errors
« Extension of linear concept of Lyapunov Vectors into nonlinear environment
» Fastest growing nonlinear perturbations
» Not optimized for future growth —
— Norm independent
— Is non-modal behavior important?
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LYAPUNOV, SINGULAR, AND BRED VECTORS
LYAPUNOV VECTORS (LLV):

Linear perturbation evolution
Fast growth

Sustainable

Norm independent
Spectrum of LLVs

SINGULAR VECTORS (SV):

Linear perturbation evolution
Fastest growth

Transitional (optimized)
Norm dependent

Spectrum of SVs

BRED VECTORS (BV):

Nonlinear perturbation evolution
Fast growth

Sustainable

Norm independent

Can orthogonalize (Boffeta et al)

LOCAL AMM IFICATION FACTOR Aty

o,
T

L13 MRF experim ents, Szunyogh et al, 19!
1

Local Lyapunov Vector {LLV)

i
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[ x5V with 24-hour optimization]




PERTURBATION EVOLUTION

PERTURBATION GROWTH
— Due to effect of instabilities
— Linked with atmospheric phenomena (e.g, frontal system)

LIFE CYCLE OF PERTURBATIONS
— Associated with phenomena
— Nonlinear interactions limit perturbation growth
— Eg, convective instabilities grow fast but are limited by availability of moisture etc

LINEAR DESCRIPTION

— May be valid at beginning stage only

— If linear models used, need to reflect nonlinear effects at given perturb.
Amplitude

BREEDING
— Full nonlinear description
— Range of typic

.
ﬁ'

OMNLY FREE PARAMETER: Range of perturbation amplitudes

Earoclinic
Instakilities

Analysis error level

Perlurbation Amplitude

Convectian

-

Tim=



HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

» Estimate analysis uncertainty

« Choices among sampling strategies, given an estimate

— Monte Carlo type sampling — “Perturbed Observations” method
* Run multiple analysis cycles with perturbed observations (Canadian approach).
« Both growing and non-growing error space sampled with realistic amplitude.
* Noise introduced hurts analysis performance.

— Directed sampling
» Singular vectors — fastest growth for pre-selected time period (ECMWF)
— Transient growth emphasized.
— Computationally very expensive.
— No general solution: depending time interval and norm.
— Norm most frequently used is uncoupled from analysis error estimates.
— No success in DA applications.

» Dynamical sampling in growing sub-space (NCEP)
— Based on principle of breeding: Cycle growing perturbations
» Capture dynamics of system responsible for error growth.
» lgnore noise.
» Successfully used in most ensemble-based DA efforts: eg, ETKF, etc.
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RTMA Region 10m U Component
CRP Average For 2007021200 — 2007071700
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CFKES current operational configuration

Model

GFS version 2003 coupled with Ocean model
MOMS3 and ice climatology

Ensemble Method

Lagged average

Initial conditions

CDAS 2 for atmosphere, GDAS (7-days lag) for

ocean

Coupling frequency Once a day
Daily frequency 00 and 12 UTC

Resolution Atmos. T62 L64

Resolution Ocean
(74°S to 64°N)

1/3°°1° in tropics; 1°°1° in extratropics; 40
layers

Ensemble members

2 every day (60 per month)

Forecast length

10 months

Post-process

Bias correction
Based on 24 yrs. of retrospective forecasts

Last implementation

August 2004




CFKES Planned changes (Suru)

Model

GFS version 2007 coupled with Ocean model
MOM4 and ice model

Ensemble Method

Lagged average

Initial Conditions

Coupled Reanalysis

Coupling frequency Every hour
Daily frequency 00, 06, 12 and 18 UTC
Resolution Atmos. T126 L64

Resolution Ocean

1/4°°1° in tropics; 1/2°°1/2° in extratropics; 40

(74°S to 64°N) layers
Ensemble members 4 every day
Forecast length 10 months

Post-process

Bias correction
Based on retrospective forecasts

Planned implementation

2010




Computing analysis error variance from multi-center analysis data

One way to get 3-dimensional flow-dependent analysis error variance for
generating initial ensemble perturbations in ET (Ensemble Transform) is
to use different analysis fields from different NWP centers.

(a). Choose some common variables from the analysis data we have few
different centers, such as NCEP, ECMWF, UKMET, MSM, JMA, US NAVY etc.

(b). Remove the systematic bias from each center’s analysis data by using a
recursive filter.

(c). Compute the analysis error variance in kinetic energy or total energy norm
using analysis data from different centers.

(d). Apply the 3-D analysis error variance to ET transformation and rescaling.




Deriving the analysis error variance from GSI

Another way to get 3-dimensional flow-dependent analysis error variance is from
NCEP operational data assimilation system (GSlI).

The method is based on Fisher and Courtier (1995), ECMWF Tech Memo. No. 220.
It takes advantage of the connection between the conjugate gradient method which
is being used in GS| and Lanczos method.

(a). Modify and run GSI to produce the gradient vectors from the preconditioned
conjugate gradient method.

(b). Run an external program (independent of GSI operation) based on the Lanczos
method to read the gradient files produced by GSI| and generate the dominant
eigenvectors and eigenvalues of the Hessian matrix.

(c). The analysis error covariance matrix will be reconstructed from the leading
eigenvectors and eigenvalues of the Hessian which is the inverse of analysis

error covariance.
(d) .The analysis error variances of GSI variables will need to be converted to those
of model variables.




Analysis error variance used in ET and ET with rescaling

1>0|Oa IS the analysis error variance obtained from operational GSI
or from multi-center analysis data.

7' = [z,", z, , e, z,"]

T -1 a _ 1 a a a
Zf P a Zf:CFC_l Z (k_l)[zl,zz,......,zk]

0 . .
P are fcst and analysis perturbati ons.

G =diag( 4,,...4,,a), a#0 C=][c,,c,,..c, ]
T, =CG **, Z,"=Z7Z'T, =Z2Z'CG ™

p

The transformed perturbations ( Zpa ) are orthogonal with respect to an inverse
analysis error variance. However, they are not centered. Centering will be done by a

simplex transformation which preserves analysis error covariance.
For details, see Wei, Toth, Wobus and Zhu (2007), Initial perturbations based on the ensemble

transform (ET) technique in the NCEP global operational forecast system, Tellus A, in print.

Finally, the transformed perturbations will be rescaled at multi-levels using the analysis

error variance in the same way as in Toth and Kalnay (1993, 1997).
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THE MAKINGS OF A WEATHER FORECAST —
HOW FORECASTS ARE MADE?

Assess current weather situation

Before we can look into future, understand what is happening now
“Initial condition”

Digest observational information

Bring observed data into “standard” format
“Data assimilation”

Project initial state into future
Based on laws of physics
“Numerical Weather Prediction” (NWP) model forecasting

Apply weather forecast information
Statistical post-processing
“User applications”

FORECASTS ARE NOT PERFECT — WHY?



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
 Incomplete observing system (not all variables observed)
* Inaccurate observations (instrument/representativeness error)
» Imperfect data assimilation methods
» Statistical approximations (eg, inaccurate error covariance information)
» Use of imperfect NWP forecasts (due to initial and model errors) —
» Effect of cycling (forecast errors “inherited” by analysis — use breeding)

GOVERNING EQUATIONS:
* Imperfect model
 Structural uncertainty (eg, choice of structure of convective scheme)
» Parametric uncertainty (eg, critical values in parameterization schemes)
» Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
« Two main sources of forecast errors hard to separate =>
* Very little information is available on model related errors
» Tendency to attribute all forecast errors to model problems

CAN REDUCE, BUT NEVER ELIMINATE ERRORS
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WHY ERRORS AMPLIFY?
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SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY
ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY O
1) The atmosphere Is a deterministic system AND st 0
has at least one direction in which perturbations grow %& 00
2) Initial state (and model) has error in it === ﬁﬂM

Chaotic system + Initial error =(Loss of) Predictability

._90% Fest probability ..

Buizza 2002
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Initial time Large uncretainty ~ Almost all predictability
is lost - full nonlinear
saturation
Ocean/Atm coupled 5 months 12 months

system



VALUE OF PROBABILISTIC FORECASTING

» Potential economic value of probabilistic forecasts

— “...the value of reliable — and even moderately unreliable — probabilistic forecasts
generally exceeds the value of ... categorical forecasts” - Murphy 1977

 Potential economic value of ensemble forecasts

— “... awinder range of potential users can benefit from the ensemble than from
the control forecasts ... the ensemble offers more economic value than the
control forecasts” — Zhu el al. 2002

« Operational forecasting implications

— “...important implications for operational forecasting ... desirability of formulating
and disseminating a wide variety of weather forecasts in probabilistic terms...”
Murphy 1977

— “A weather forecast is ... not complete unless it is expressed in the form of
probability distributions.” - Zhu el al. 2002

— “Uncertainty is thus a fundamental characteristic of weather, climate, and
hydrological prediction, and no forecast is complete without a description of its
uncertainty.” NRC Report: “Completing the Forecast”, Ban et al., 2006



USER REQUIREMENTS:
PROBABILISTIC FORECAST INFORMATION IS CRITICAL

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take

action (eg, protects its crop against frost) \iyine & Harrison, 1999
FORECAST
- YES NO
Q |
E S| Hts) M(isses)
> > | Mitigated Loss Loss
7
% ® F(alse alarms) C(orrect rejections)
< Cost No Cost

Mean Expense,. = hML + mL + fC| | Mean Expense b = oML

ME _, = minjol, oML + (1-o
ME_,— ME,_ cl Lot (1-0)C]
Value = VE —WE
—cl_____parf o=climatological frequercy
Optimum decision criterion for user action: P(weather event)=C/L
(Murphy 1977)




ASSESSING FORECAST UNCERTAINTY

Forecast process has errors
— Initial condition, model not perfect

Errors can be reduced, but never eliminated
— Main (only) NWP thrust so far: reduction of uncertainty

Atmosphere is chaotic system

— Any error amplifies

» Predictability is finite and
— Varies from case to case

Users need to know about expected forecast errors
— Serious limitation otherwise

Errors can be assessed

— Statistically

» Climatology of errors in single forecast
— Dynamically

» Ensemble forecasts

—New thrust in NWP is assessing uncertainty



MOTIVATION FOR ENSEMBLE FORECASTING

« FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR:

— USERS:
* Need to know how often / by how much forecasts fail
« Economically optimal behavior depends on
— Forecast error characteristics
— User specific application
» Cost of weather related adaptive action
» Expected loss if no action taken
— EXAMPLE: Protect or not your crop against possible frost
Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1
« NEED FOR PROBABILISTIC FORECAST INFORMATION

— DEVELOPERS:
* Need to improve performance - Reduce error in estimate of first moment
— Traditional NWP activities (l.e., model, data assimilation development)
* Need to account for uncertainty - Estimate higher moments

— New aspect — How to do this?
» Forecast is incomplete without information on forecast uncertainty
« NEED TO USE PROBABILISTIC FORECAST FORMAT

FORECASTS ARE NOT COMPLETE UNLESS UNCERTAINTY ASSESSED



FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model

* Is not best estimate for future evolution of system
*Except if constrained by data in 4DVAR

» Does not contain all attainable forecast information
*Case-dependent variations in forecast uncertainty missed
*4DVAR does not come with an ensemble generation algorithm

» Can be combined with past verification statistics to form probabilistic forecast
» Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
 Continuity equation for probabilities, given dynamical egs. of motion
*Dynamical forecast of pdf based on conservation of probability values
*Initialize with probability distribution function (pdf) at analysis time
* Prohibitively expensive -
» Very high dimensional problem (state space x probability space)
» Separate integration for each lead time
* Closure problems when simplified solution sought



FORECASTING IN A CHAOTIC ENVIRONMENT —

PROBABILISTIC FORECASTING BASED A ON SINGLE FORECAST —
One integration with an NWP model, combined with past verification statistics

DETERMINISTIC APPROACH - PROBABILISTIC FORMAT
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SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY
ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY O
1) The atmosphere Is a deterministic system AND st 0
has at least one direction in which perturbations grow %& 00
2) Initial state (and model) has error in it === ﬁﬂM

Chaotic system + Initial error =(Loss of) Predictability

._90% Fest probability ..

Buizza 2002
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WHY ENSEMBLES?

TRADITIONAL PARADIGM

« Single value forecast incomplete from viewpoints of
— Science — Inherently statistically inconsistent with observations
— Applications — Significantly fewer users, with less value

* Probabilistic forecasts needed — Generate them through

— Single forecast integration
« Accumulate error statistics over many cases (“bias correction”, eg, MOS)

» Pro: Maximum possible fidelity in forecast - all comp. resources go into one solution
— Improved statistical reliability; Slight increase in statistical resolution

« Cons: Aggregate statistics - no case dependent variations in uncertainty captured
As errors become nonlinear, single solution becomes unrepresentative
— Loss of statistical resolution
— Liouville equations

» Theoretically proper solution in perfect model framework
— Pdf of initial state integrated in time
» Impractical, enormous computational costs
— Ensemble forecasts

« Multiple integrations started with sample from estimated initial pdf
— Provides multiple trajectories for critical downstream applications

« Time evolution of pdf captured in truncated form (how many members needed?)
« Ad-hoc methods aimed at capturing model related uncertainty

ENSEMBLE APPROACH



PROPOSED CHANGE

« Major paradigm shift
— Incorporate assessment and communication of uncertainty in forecast process

« |sita major change in course of “Weather Ship™?
— le, abandon course of ever improving single forecast scenario (expected value)?

 No — Expand, not abandon
— Keep improving fidelity of forecasts, PLUS

— Add new dimension
» Capture other possible scenarios — ensemble forecasting
— Use aflotilla, instead of one ship, in exploring nature
— Existing activities are subset of expanded forecast process

» Single value forecast is expected value of full probability distribution
— Can keep serving forecasts in old format to users who prefer that



Single forecast (driven by GFS winds) example for drifting virtual ice floe

7 September 2006
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Ensemble forecast for drifting ice floe for same case
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Most likely forecast for drifting ice floe for same case

B0, 8 T
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WHY CHANGE IS NEEDED?

 Why users (should) care about forecast uncertainty?

— They admittedly want minimal or no uncertainty in forecasts
+ Distinction between no uncertainty in the forecast, vs. not talking about it
— Forecast uncertainty cannot be arbitrarily reduced

» Despite major ongoing & continuing efforts, they persist forever
— Chaotic nature of atmosphere - land surface — ocean coupled system + initial/model errors
— Level of uncertainty is determined by nature and level of sophistication in forecast system
— Forecast uncertainty can be ignored though

* Negative consequence on informed users
— Not able to prepare for all possible outcomes
» Assumes a certain scenario and remains vulnerable to others

» Possibly serious loss in social/economic value of forecast information

« Why forecasters (should) care about forecast uncertainty?

— Imperfect forecasts are consistent w. observations (reliable) only if in prob format

 If in other format, must be brought into probabilistic format through
— Verification / bias correction



ADVANTAGES OF PROBABILISTIC FORMAT

 More rationalized and enriched forecaster - user interactions
Old paradigm

— Convoluted forecaster-user decision process

« User expects forecaster to make decision for them in presence of uncertainty
— “Willit rain?” — “80%” — “But tell me, will it rain?”

New paradigm

— Forecaster and user decision processes enhanced and better linked

» Allows forecasters to capture all knowledge about future conditions
— Provision of information related to multiple decision levels in probabilistic format critical
» Provider helps interpret probabilistic info & and modify user decision process if needed
» Option to continue providing single value or other limited info until user ready

» Allows users to decide about most beneficial course of action given all possibilities
— Proper use of probability or other uncertainty information needed - Training
» User requests critical weather forecast info depending on their sensitivity



TRADITIONAL FORECAST PROCESS

« Focus on single forecast scenario

— Reducing uncertainty in single forecast is main emphasis

» Loss of accuracy in forecast estimate of expected value of distribution
— Mean of ensemble cloud provides better estimate

— Ignores or simplifies forecast uncertainty

» Uncertainty assessed as statistically averaged error in single fcst (second thought)
— Ensemble cloud provides better estimate of case dependent variations in uncertainty

— Use of single value / categorical forecast format

« Difficulty in formulating/communicating plausible alternate scenarios
— Ensemble member forecasts can directly feed into Decision Support Systems

« One-way flow of information from observations to users

— Not adaptable to case dependent user requirements

« Ensemble can propagate back user requirements to adaptive
— Observing, assimilation, modeling/ensemble, post-processing and application components
» Applications in planning and execution of new CONOPS in high impact events



Single value

PROPAGATING FORECAST UNCERTAINTY

OLD PARADIGM:
Reduce Uncertainty

FORECAST PROCESS

NEW PARADIGM:
Reduce & Assess
Uncertainty

Misconstrued
determinism

NATURE

Critical sensitivity to
initial conditions - Chaos

Reduce obs. uncertainty

OBSERVING SYSTEM

Quantify obs. uncertainty

Estimate expected value

DATA ASSIMILATION

Estimate distribution

Reduce model errors

NWP MODELING

Reduce & represent
model errors

Ad hoc opportunities

ENSEMBLE
FORECASTING

Systematic approach

Reduce systematic error

STATISTICAL POST-

Calibrate uncertainty

PROCESSING
Single value BASIC PRODUCTS Distributional
characteristics
Yes or No forecasts USER SUPPORT Incorporate forecast
tailored for decisions SYSTEMS uncertainty info
Limited forecast info - SOCIETY All forecast info —

Restricted usage

Optimal user decisions

Ensemble Forecasting:

Central role — bringing the pieces together

Distribution




HOW CAN IT BE DONE? NEW PARADIGM

« Adopt ensemble approach across all environmental prediction activities

— Expand forecasting with new dimension of uncertainty

» Multiple scenarios (in place of single scenario)
— Provides best forecast estimate for both expected value (as before) and uncertainty (new)

— Unified scientific, technological, human approach
» Sharing resources across NWS & NOAA
— Ensemble is centerpiece both symbolically and figuratively in forecast process

« Ensembles act as a glue & two-way information channel
— Observing system, data assimilation, numerical modeling
» ENSEMBLES
— Statistical post-processing, product generation, decision making

« Design, develop, & implement missing components of new forecast process
— Gradual, measured steps
« Basic capability - Short-term, 2-3 yrs, leading to
* Full implementation - Long-term, 5-10 yrs



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH — ENSEMBLE FORECASTING

- IDEA: Sample sources of forecast error
» Generate initial ensemble perturbations
* Represent model related uncertainty

« PRACTICE: Run multiple NWP model integrations
» Advantage of perfect parallelization
» Use lower spatial resolution if short on resources

« USAGE: Construct forecast pdf based on finite sample
* Ready to be used in real world applications
 Verification of forecasts
« Statistical post-processing (remove bias in 1st, 24 higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS ORIGINATING FROM TWO MAIN SOURCES

INITIAL CONDITION RELATED ERRORS -*“Easy”
« Sample initial errors
* Run ensemble of forecasts
* It works
» Flow dependent variations in forecast uncertainty captured (show later)
» Difficult or impossible to reproduce with statistical methods

MODEL RELATED ERRORS - No theoretically satisfying approach
» Change structure of model (eg, use different convective schemes, etc, MSC)
» Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
» Works? Advantages of various approaches need to be carefully assessed
* Are flow dependent variations in uncertainty captured?
 Can statistical post-processing replicate use of various methods?
* Need for a
* more comprehensive and
* theoretically appealing approach



SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT'S KNOWN — FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION

THEORETICAL UNDERSTANDING - THE MORE ADVANCED A SCHEME IS
(e. g., 4DVAR, Ensemble Kalman Filter)
» The lower the overall error level is
» The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES -
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
 Statistical approach (dynamically growing errors neglected)
» Selected estimated statistical properties of analysis error reproduced
* Baumhefner et al — Spatial distribution; wavenumber spectra
« ECMWEF — Implicite constraint with use of Total Energy norm
* Dynamical approach — Breeding cycle (NCEP)
» Cycling of errors captured
 Estimates subspace of dynamically fastest growing errors in analysis
» Stochastic-dynamic approach — Perturbed Observations method (MSC)
* Perturb all observations (given their uncertainty)
* Run multiple analysis cycles
» Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES — SEVERAL OPEN QUESTIONS

« RANDOM SAMPLING - Perturbed observations method (MSC)
— Represents all potential error patterns with realistic amplitude

— Small subspace of growing errors is well represented

— Potential problems:
» Much larger subspace of non-growing errors poorly sampled,
* Yet represented with realistic amplitudes

« SAMPLE GROWING ANALYSIS ERRORS - Breeding (NCEP)
— Represents dynamically growing analysis errors
— Ignores non-growing component of error

— Potential problems:
» May not provide “wide enough” sample of growing perturbations
 Statistical consistency violated due to directed sampling? Forecast consequences?

« SAMPLE FASTEST GROWING FORECAST ERRORS - SVs (ECMWF)
— Represents forecast errors that would grow fastest in linear sense
— Perturbations are optimized for maximum forecast error growth

— Potential problems:
» Need to optimize for each forecast application (or for none)?
 Linear approximation used
* Very expensive



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

« DATA ASSIM: Growing errors due to cycling through NWP forecasts
« BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

— Sample subspace of most rapidly growing analysis errors
« Extension of linear concept of Lyapunov Vectors into nonlinear environment
» Fastest growing nonlinear perturbations
» Not optimized for future growth —
— Norm independent
— Is non-modal behavior important?
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LYAPUNOV, SINGULAR, AND BRED VECTORS
LYAPUNOV VECTORS (LLV):

Linear perturbation evolution
Fast growth

Sustainable

Norm independent
Spectrum of LLVs

SINGULAR VECTORS (SV):

Linear perturbation evolution
Fastest growth

Transitional (optimized)
Norm dependent

Spectrum of SVs

BRED VECTORS (BV):

Nonlinear perturbation evolution
Fast growth

Sustainable

Norm independent

Can orthogonalize (Boffeta et al)

LOCAL AMM IFICATION FACTOR Aty

o,
T

L13 MRF experim ents, Szunyogh et al, 19!
1

Local Lyapunov Vector {LLV)

i

-Hnunnﬂnnnuunnnuﬁn

E-.-

[ x5V with 24-hour optimization]




PERTURBATION EVOLUTION

PERTURBATION GROWTH
— Due to effect of instabilities
— Linked with atmospheric phenomena (e.g, frontal system)

LIFE CYCLE OF PERTURBATIONS
— Associated with phenomena
— Nonlinear interactions limit perturbation growth
— Eg, convective instabilities grow fast but are limited by availability of moisture etc

LINEAR DESCRIPTION

— May be valid at beginning stage only

— If linear models used, need to reflect nonlinear effects at given perturb.
Amplitude

BREEDING
— Full nonlinear description
— Range of typic

.
ﬁ'

OMNLY FREE PARAMETER: Range of perturbation amplitudes

Earoclinic
Instakilities

Analysis error level

Perlurbation Amplitude

Convectian

-

Tim=



HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

» Estimate analysis uncertainty

« Choices among sampling strategies, given an estimate

— Monte Carlo type sampling — “Perturbed Observations” method
* Run multiple analysis cycles with perturbed observations (Canadian approach).
« Both growing and non-growing error space sampled with realistic amplitude.
* Noise introduced hurts analysis performance.

— Directed sampling
» Singular vectors — fastest growth for pre-selected time period (ECMWF)
— Transient growth emphasized.
— Computationally very expensive.
— No general solution: depending time interval and norm.
— Norm most frequently used is uncoupled from analysis error estimates.
— No success in DA applications.

» Dynamical sampling in growing sub-space (NCEP)
— Based on principle of breeding: Cycle growing perturbations
» Capture dynamics of system responsible for error growth.
» lgnore noise.
» Successfully used in most ensemble-based DA efforts: eg, ETKF, etc.



HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

Proposed solution: Dynamical sampling in growing sub-
space — ET / ETKF

Link with DA (GSI — ET)

* Need collaboration between DA and ensemble teams.

» Take error variance from GSI to specify ensemble perturbations

* Feed back information from ensemble into background error covariance.
» ET provides series of perturbed analyses consistent in time

— Important for wave, land surface ensembles etc where perts depends
on the history.

Ensemble-based DA — ETKF

« Same ensemble principles, except 2-way interactions tuned
simultaneously.



Bred Vector Ensemble Transform Bred VVector
(Current) (New)

Rescaling P1 forecast Rescalin
/ P2 forecast ) )

ANL > ANL >
- i - P3 forecast
t=t0 t=t1 t=t2 Setforecast o

P#, N# are the pairs of positive and negative P1, P2, P3, P4 are orthogonal vectors

P1 and P2 are independent vectors No pairs any more

Simple scaling down (no direction change) To centralize all perturbed vectors (sum of all
vectors are equal to zero)
Scaling down by applying mask,

ANL > The direction of vectors will be tuned by ET.




Unified EFS and DA

EFS and DA systems must be consistent for best
performance of both.

SSI/GSI currently provides best estimate of analysis, GSI will be
used to derive analysis uncertainties (error variance) for EFS.

EFS produces flow dependent forecast (background) error
covariance to be tested in GSlI later.

A Hybrid DA-EFS System

Best analysis error variances (diag(P?))

GSl| ———————— EFS

: f
Accurate forecast error covariance P or B




(@). Perts are centered around the analysis to improve ensemble mean.

(b). They have simplex structure, not paired. Ensures that perts will have
maximum number of effective degrees of freedom. The variance will
be maintained in as many directions as possible within the ensemble
subspace.

(c). They are uniformly centered and distributed in different directions. The
larger the ensemble, the more orthogonal they become. They become
orthogonal if the number of members approaches to infinity.

(d). The initial perts have flow dependent spatial structure if the analysis error
variance is derived from operational DA system at every cycle.

(e). The covariance constructed from the perts is approximately consistent with

the analysis covariance from the DA if the number of ensemble members is
large.

. Weietal. 2005, WMO TD No0.1237, WWRP THORPEX No. 6, 2005. p227-230.
2006, US Department of Commerce, NOAA/NCEP Office Note 453,
33pp, September 2006, (also submitted to Tellus A, 2007).



Perturbed
Observations
(MSC, Canada)

Breeding with
Regional
Rescaling
(NCEP, USA)

Singular
Vectors with
total energy

norm (ECMWF)

Estimation ofF
analysis

uncertainty

Realistic
through sample,
case dependent
patterns and

amplitudes.

Fastest growing
subspace, case
dependent

patterns.

No explicit
estimate used,
variance not

Fflow dependent.

Sampling of
analysis

uncertainty

Random for all
errors,
including non-
growing,
potentially
hurts short-
range

performance.

Nonl inear
Lyapunov
vectors,
subspace ofF
fastest growing
errors, some
dependence
among

perturbations.

Dynamically
FfFastest growing
in future,

orthogonal.

Consistency
between EFS and
DA system

Good, quality
of DA lagging
behind 3D-Var.

Not consistent,
time-constant
variance due to
use of fTixed

mask .

Not consistent,
potentially
hurting short-
range

performance.




ETKF,

perturbations
infFluenced by
forecasts and

observations

ET/rescaling
with analysis
error variance
estimate from
DA

Hessian
Singular
Vectors

Estimation
analysis

uncertainty

Fast growing
subspace, case
dependent
patterns and

amplitudes.

Fast growing
subspace, case
dependent
patterns and

amplitudes.

Case-dependent
variance info
from analysis,
amplitudes of
SVs have to be

specified.

Sampling

analysis

Orthogonal in

the normalized

High EDF iIn

ensemble

Dynamically

fastest growing

uncertainty observational subspace. in future.
space.

Consistency Very good, Very good, Possibly

between EFS and however, DA provides consistent

DA system

quality of DA
has not been
proven better
than 4D-Var 1in
operational
environment so

far.

good analysis
for EFS which
provides
accurate
forecast error
covariance for
DA .

(not used
operationally
by any known
NWP centres).




SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE / REPRESENTATION OF

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
 Closure/truncation errors related to:
» Spatial resolution
* Time step
» Type of physical processes explicitly resolved

» Parameterization scheme chosen
*Structure of scheme
*Choice of parameters
*Geographical domain resolved
*Boundary condition related uncertainty (Coupling)

NOTES:

« Two main (initial cond. vs. model) sources of forecast errors hard to separate =>

* Very little information is available on model related errors
» Tendency in past to attribute all forecast errors to model problems
Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc



WHAT HAPPENS IF MODEL ERRORS ARE IGNORED?

Y. Zhu
NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment
All members shifted statistically Perturbation growth lags error growth

Talagrand Distribution (NH 500mb Z)
for D0Z01TJUNZ002-00Z31AUG2002
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The impact of using a second model at MSC

the two ensembles into the

The warm bias was reduced substantially and
the U-shape disappeared by combining
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS -1

CURRENT METHODS
1) Change structure of model (use different convective schemes, etc, MSC)
«  Perturbation growth not affected?
« Biases of different model versions cancel out in ensemble mean?

Spread

IMPACT OF PERTURBING THE MODEL ffBabk H ‘reean. 15 mn. &l nogaw. Cwao, 2AA3]

&0 e
= L
—. B0 | 24 F
E =L
% 40 2af
(r &t
o
v 30 T
[ ]

- L s}
a ]
= 20 mF
LLI
= / ITF
w10+ ! ! ! ! ! ! 1%k

Based on|Houtekamer (B

| | | | | | | | 14l ]
1 2 3 4 ELEAE?TME?(EIEYEJ g 1 e t g & |2 18 29 H=}» b 42 489 B M ob
BEinh L

Spread of B-member ensemble with (Blue dashed fine) and without (red continuous ling) - n
changing model parametersiphysics packages from one ensemble member io the . i
another. 500 hFa gegpotential height, forecasts starfed af 0000 UTC on Apnil 18, 1554, Oper 3 mOdel versions
Note that initial perturbations are larger for thechanging model ensemble and that the . P i
curve for the unchanging model ensemble has been shifted one day fo the left, to ilus- Para . More mOdel d Ive rSIty

trafe that in this ensemble sefup the chages in model corfiguration do not reswt in larger
spread. Data are from Table 4 of Houtekamer ef al., 1996.



wprand lukl

wprand ICI

aprasd dncal

i
2.5
£
E)
2.2
21
2.8
1.9
18
1.7

-
n

-
=

Spread

Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity

RMS error

ELP luwon. 15 wew. 4 oaves. Dwo. 20030 G5Bfmb H ‘rean. 15 mn. T oowsw. Can. 2EE3] ELP lwron. 15 wen. " cawes. Duo. 20030 G5BBmb H frean. 15 mn. T4 nowes. Cwa. 2A831
o a.T L)
]l =
S a5 =
b 53 =
i I )
J i _aa a&.
L] —_— -
i 2 a7 I o
| 15 = PEL 1=
s faa -]
e 21 L)
1 = 14 1%
1 & 1,7 18
1 IE 1.5 12
1 4 1.3 ' ' ' T ' ' ' ' ' '
48 A4 &b pi =] 12 |2 w3
Bk U
a.|e 2.3 4.2
2.2 4.8
1 = ;; LX)
o ]
] a,
1.9 e s
| 18 24
i i R
to 2.4 alm [ .0
H H a
H 1E HEN:
15 L
"aa hd 26
1.3
1 2.4
1.2
| =® il zaf
i@ 2.8 .
1.8 a L L L L L L L L L 1.8 L L L L L L L L L
BE I 19 24 3 Fr d2 48 04 =@ e L} 2w 3 W X 42 48 5
S0k U Eh0rh FH
L] aa 1=
TE 1]
TR [
65 1
- -]
Aed =
i Lia
“ B85
1 ! E]
E.@
t 12
4.5 m
+2 I o
aks L} - ?
Il 12 24 =@ b 42 42 54 =3 Bk 12 12 33 = M 41 42 54 Il 12 24 3@ b 42 42 54 & B [} L) 1?2 12 33 W 2 42 42 54
Forecast Hours For=aaak Haura Forecast Hours Far=aaak Haura




SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF
IMPERFECT MODELS - 2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
 Modest increase in perturbation growth for tropics
«  Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH

Spread ROC Area
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850 hPa Temp

Spread ROC Area

MODEL UNCERTAIMTIES IM ENSEMBLE FREDICTION
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BltS score

RESULTS FROM COMBINED USE OF RAS & SAS

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES

Precipitation Forecast Scores Day 3

SAS, RAS, & Combination

North America
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RESULTS FROM COMBINED USE OF RAS & SAS

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE
ON FORECASTS EXCEPT PRECIP

Rank histogram comparing distributions
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS &
RAS SUB-ENSEMBLES COVER SAME
SUBSPACE

Percentage Excessive Qutliers of That Expected
for NH 500 mb Height Talagrand Distribution
Average For 0OZO1SEP200Z — O00Z3I0OSEFP2002

Percentage above/below zero

B =l
Forecast daws

D. Hou

500 hPa height NH extratrop. RMS error for
RAS, SAS, and NAS (no convection)
NO DIFFERENCE WHETHER
CONVECTIVE SCHEME IS USED OR NOT

NH 500 mb Geopotential Height
Average For DDZO1SEPZ002 — 0O0Z30SEPZ002
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Combination Cosfficients

Percentage above/below zero

REPRESENTING MODEL RELATED UNCERTAINTY
A STOCHASTIC PERTURBATION (SP) SCHEME

General Approach: Adding a stochastic forcing term
in to the tendencies of the model equations.

Strategy: Generate the S terms from (random) linear
combinations of the conventional perturbation
tendencies.

Desired Properties

1. Forcing applied to all variables

2. Approximately balanced

3. Smooth variation in space and time
4. Flow dependent

5. Quasi-orthogonal

Value of Combination Coefficients for Member 01

[=F] 11 =1 EE] a1 ET] 51

time {8 hour steps)

FAVENOQE ©FOr WULaw | U LSS — U D e | s

WITHOUT_SP
WITH_SP

d 0 Reduced Qutlier ,,,,,,,,,,,,,,,,

2 3 4 = =3 - g =] 1T 11 12 13 14 15
Forecast dawys
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NH 500 mb Geeo
Average Feor QOZ010CTZ004 — DOZ

otential Height
10CT2004

ME, MASE, SPREAD and RMSE scores

—z0

Skill Scores

Forecast days

Northern Hemisphere 500 mb Height
Ranked Probability Skill Scores {RPSS)
Average For 20041001 — 2001031

i B >tochastic Parameterization (SP) | —tws

ool NN ---- Without SP
DS RN —2With SP
o . - WithoutSP
T S, but optimal pp.
e R R N | upper limit) |

Forecast days



STOCHASTIC PERTURBATIONS

AREA OF ACTIVE RESEARCH
ECMWEF operational (Buizza et al, 1999), A random numbe (sampled from a
uniform distribution) multiplied to the parameterized tendency

= ECMWEF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic
Backscatterused to determine the perterbation

" Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive
stochastic forcing

NCEP METHOD UNDER TESTING

o Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS — Add to each perturbed member:

» Difference between single high & low-res forecasts (after scaling and filtering)
= Perturbation based on the differences among the ensemble members at previous
step in integration
« Use global or localized perturbation approach
 Random or guided selection of members (e.g., use difference between
most similar members)



REPRESENTING MODEL RELATED UNCERTAINTY
A STOCHASTIC PERTURBATION SCHEME

Value of Combination Coefficients for Member 01

General Approach: Adding a stochastic
forcing term in to the tendencies of the
model equations.

Assumption: The perturbations (difference
between ensemble members and the
control) in the conventional tendencies
provide a sample of realizations of the
additional stochastic forcing S.

Strategy: Generate the S terms from
(random) linear combinations of the
conventional perturbation tendencies.

Desired Properties

1. Forcing applied to all variables

2. Approximately balanced

3. Smooth variation in space and time
4. Flow dependent

5. Quasi-orthogonal

Expected Results

Increased spread
Reduced systematic error
Improved probabilistic forecast

Percentage above/below zero

Combination Cosfficients

hl 31 a1
time {& hour steps)

Example of Combination Coefficients

Percentage Excessive Qutliers of That Expected
for NH 500 mb Gecpotential Height Talagrand Distribution
Average For 0CGZO10CT2004 — 00Z310CTZ004

WITHOUT SP
WITH_SP

z 3 4 = =3 7 a a 12 11 1z 13 14 15
Forecast days



QOutliers: H500, day 6 forecast, 20041002

Without SP
large number of outliers with
negative and positive forecast bias

Nermalizad dstanca (shoded) of anulysie from ane mean [p-ur[E"kz contours)
vhare 4 corsapullye arsamble eela mizs verlfdng SO0 WP halght tbik contours)
Inke 2004100300 vriys 2004100800 lsad roee: 144-155-1ob—190 hre

Inl Rl Lo

With SP
the number of outliers is
significantly reduced

Normalized dstance (shoded) of analysia from ane mean [p-unsz cantours)
vhara & consacutive enaemble Bela mizz vertfdng 00 HPg hﬂlu1h bk contours)

Inl: 004 Q0F vrfys 2004100800 lead drnee 144-154- 14190 hre
= = : B :| ' :




ME, MASE, SPEEAD and EMSE scores

—
=
=

Statistics: Ensemble Spread and Error of Ensemble Mean
Increased Spread, Reduced Mean Error (ME)
Reduced Mean Absolute Systematic Error (MASE)

----- Without SP ----—- With SP
NH 500 mb Geopotential Height SH 500 mb Geopotential Height
Average For 00Z010CTZ2004 — ODZ310CT2004 Average For 00Z010CT2004 - 00Z310CT2004
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—
=
=
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ME, MASE, SPREAD and EMSE scores
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Skill Scores

-04
0

Comparison with Post-Processing (PP)
RPSS: Improved in both cases (SP and PP)
SP is more effective in week 2 forecast

Northern Hem|s here 500 mb Hei ht

Ranked Probublll Skill Scores (R
Average For 20041001 - 2001031

o] Stochastic Parameterization (SP) —Hg
g o—o WY
0.8' """" W W H m-w_w T
0.7. ............. N R L LR RS
---- Without SP
0.6' .................... .l. ................. ____WithSP .........................
L I W S=2Without SP

r 2 3 4 5 6 7 &8 8 10 1 12 13 14 15
Forecast days

Skill Scores
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Northern Hem|s here 500 mb Hei ht

Ranked Probublll Skill Scores (R
Average For 20041001 - 2001031

" Bias-correction (1%PP) | —0p
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Forecast days



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS -3

CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
. Are flow dependent variations in uncertainty captured?
. Can statistical post-processing replicate use of various methods?

NEED NEW
«  MORE COMPREHENSIVE AND
« THEORETICALLY APPEALING
APPROACH



NEW APPROACH TO NWP MODELING —
REPRESENTING MODEL RELATED UNCERTAINTY

MODEL ERRORS ARE DUE TO:
 Truncation in spatial/temporal resolution —
* Need to represent stochastic effect of unresolved scales
* Add parameterized random noise
 Truncation in physical processes resolved
* Need to represent uncertainty due to choice of parameterization schemes
 Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WiLL NEVER Go awaY
IN ENSEMBLE ERA,
NWP MODELING PARADIGM NEEDS TO CHANGE

OLD NEW
GOAL 1st Moment Probability distribution
MEASURE RMS error Probabilistic scores
VARIANCE Ignored / reduced Emphasized

NWP MODEL  Search for best configuration = Represent uncertainty



NEW APPROACH TO NWP MODELING —
REPRESENTING MODEL RELATED UNCERTAINTY

IT IS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL
FORECAST

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,

MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED
Resolution (time and space truncation)
Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -

Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,

ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS
Case dependent errors can be captured and corrected



WILL NEW APPROACH ADD VALUE?

WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?
WILL IT GIVE CASE-DEPENDENT ESTIMATES
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF
MODEL-RELATED UNCERTAINTY?

NH 500 mb Height
Average Fer GUZDTJULZOGT — GOZITJULZ20G7

REMS ermr=

I‘0 I K 3 1 o 13 v H El 1 I K 13 B} 15
Forscast days

SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS
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UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

Relative megsure of predictability (Cﬂlors?D )
for ensemble mean farecast {contours) of 500 hPo height
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ADVANTAGES OF USING ENSEMBLE (VS. CONTROL) FCSTS
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OUTLINE / SUMMARY

TRADITIONAL NWP APPROACH
— REDUCE FORECAST UNCERTAINTY

— |IGNORE REMAINING ERRORS
* Problem for users

SOURCES OF FORECAST ERRORS
— INITIAL CONDITION
— NUMERICAL MODEL

ESTIMATING AND SAMPLING FORECAST ERRORS

— INITIAL CONDITION
» Breeding technique / ET

— MODEL ERRORS
* No solid scientific basis, open research

POTENTIAL VALUE OF ENSEMBLE APPROACH

— IMPROVED SINGLE VALUE ESTIMATE

— CASE DEPENDENT ESTIMATE OF UNCERTAINTY

— FULL PROBABILITY DISTRIBUTION / TRAJECTORIES

115



BACKGROUND
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS

—— SMALLU HCEFITAIN _ |
——— LARGE UNCERTAIN
k---| MRF (AVERAGE UNCERTAINTY)

HIT RATE (%)
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LEAD TIME (hours)
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THE UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

35

HIT RATES FOR 1-DAY FCSTS
CAN BE AS LOW AS 36%, OR AS HIGH AS 92%

HIGH PREDICTAEILITY
DAYS

10-13

10-15% OF THE TIME A 12-DAY FCST CAN BE AS GOOD, OR A
1-DAY FCST CAN BE AS POOR AS AN AVERAGE 4-DAY FCAST

1-2% OF ALL DAYS THE 12-DAY FCST CAN BE MADE WITH MORE
CONFIDENCE THAN THE 1-DAY FCST

AVERAGE HIT RATE FOR EXTENDED-BANGE FCSTS IS LOW —
VALUE IS IN KNOWING WHEN FCST IS RELIABLE

-----------

T ——— —— e -

100

w0 0aa
7 90553

—— NCEP

0 1020304050607 080901 00
FORECAST PROBABILITY (%)

Reliability diagram for 240—-hour lead time 500 hPa height NH ex-
fratropics forecasis between March and May 1897. Forecast
probabilities are based on how many ensemble members fell in
any of 10 climatologically equally likely bins at each gridpoint, and
are calibrated using verfication statistics from the winter of
1995-96. Insert in upper lefi corner shows in how many events a
particular forecasf probability was used for the most likely bin (en-
semble mode).



ENSEMBLES: WHEN?

Single forecast approach favored when

— Case-dependent variations are weak in
» Level of linear error growth at short lead times
» Pdf evolution at short lead times (ie, quasi-linear behaviour)
» Model-related error behaviour (at any lead time)

— Aggregate bias-correction algorithms adequate

Use ensembles otherwise
— Review criteria above for each application
— Bias-correct both single value & ensemble forecasts (ie, pdf)
» Decide on forecast configuration based on results
“Generic” configuration
— Higher resolution control for short lead time if beneficial
— Lower resolution ensemble out to longer lead times
» Benefits from combining hi-re control & lo-res ensemble at shorter leads?
Considerations

— Integrations must resolve phenomena of interest 118
* Unless sophisticated statistical down-scaling techniques can be developed



Single value

PROPAGATING FORECAST UNCERTAINTY

OLD PARADIGM:
Reduce Uncertainty

FORECAST PROCESS

NEW PARADIGM:
Reduce & Assess
Uncertainty

Misconstrued
determinism

NATURE

Critical sensitivity to
initial conditions - Chaos

Reduce obs. uncertainty

OBSERVING SYSTEM

Quantify obs. uncertainty

Estimate expected value

DATA ASSIMILATION

Estimate distribution

Reduce model errors

NWP MODELING

Reduce & represent
model errors

Ad hoc opportunities

ENSEMBLE
FORECASTING

Systematic approach

Reduce systematic error

STATISTICAL POST-

Calibrate uncertainty

PROCESSING
Single value BASIC PRODUCTS Distributional
characteristics
Yes or No forecasts USER SUPPORT Incorporate forecast
tailored for decisions SYSTEMS uncertainty info
Limited forecast info - SOCIETY All forecast info —

Restricted usage

Optimal user decisions

Ensemble Forecasting:

Central role — bringing the pieces together

Distribution




RESEARCH TO OPERATIONS TO APPLICATIONS FUNNEL

WHO WHAT
. . RESEARCH & , .
Wide research community DEVEL OPMENT General basic & applied R&D
\Rj éar h)L bs Grants DIRECTED R&D directed toward operations
R&D

Systematic transition to operations

Environmental I\ﬁdel'ln.g_(:entr

NCEPR Central Operatians

NCEP SeJe Centerl;

\(l | _ USER _
J Os, Weather Enterprise SUPPORT Delivery of products to end users
rlr

7/24 Product generation

Systematic transition to applications

Diverse user community SOCIETAL Decision making, feedback
APPLICATIONS



ENSEMBLES AND THE RESEARCH COMMUNITY

LINKED THROUGH THORPEX — MAJOR INTERNATIONAL RESEARCH PROGRAM
GOAL: Accelerate improvements of high impact weather forecasts

INTEGRATED
ADAPTIVE COLLECTION & DATA
USE OF OBSERVATIONS ASSIMILATION &
/\ FORECASTING
: ICE GLOBAL OPERATIONAL/ i N
$O | = QTTe
5 ErmP eaél?fm+afe (Q ) E SD_,
P> @ | | oBSERVING = DATA O < O S
Tl = SYSTEM ~— ASSIMILATION ol 10 L 2
: (|7) : 8 bAdapm_fe = - il LLI
: < P s observations H : :.: < : , % c|7)
(L.LI) Days 5 Forecast error'U Initial state +) A % . — >
L 15-60 = covar matrix Error estimatg Qi Z D
8 P I Probabilistic 10 i 4 (|7)
] > | | SOCIOECON. el FORECAST ENOER I EE <
P — | | APPLICATIONS SYSTEM < O @)
D < @) Targeted forecast, = i LL]
S :(Z> equiremen \ D) '
P 5 - O
ok TEST CENTER "
WEATHER-CLIMATE @ \
LINK MODEL ERRORS
USER CONTROLLABLE & HIGH IMPACT

PROBABILISTIC FORECASTS MODELING




ENSEMBLES AND NOAA SERVICES

NWS requirements must be redefined

— NWS operations is strictly requirement driven
» Culture must change to support evolution in operations

New emphasis on high impact events
— W&W Goal & EMP Sub-Goal involvement

High Impact Events Theme
— Adaptive and event driven

— Integrated across the spectrum of services An Integrated Plan of Operations

— Probabilistic approach NOAA’s Weather and Water
Enh d aut ted quid High Impact Events

— Enhanced automated guidance EY 2000 — 2013

— New role for forecasters August 3, 2006

— Environmental Information Repository

“Establish comprehensive suite of ensemble forecast systems (“forecast
engine”) that will facilitate the generation of automated forecast guidance
products in the framework of the new NOAA CONOPS as the basis
(“forecast engine”) for NOAA operations regarding high impact events:
— New automated “forecast engine that adapts to high impact events

« Adaptive observations

« Adaptive ensemble suite

 Statistical post-processing



CONSIDERATIONS FOR OPERATIONAL IMPLEMENTATIONS

Performance

— Offline research, parallel development, pre-implementation testing
« User relevant verification statistics (ie, bias corrected & downscaled forecasts)

Economy

— Operations is narrowest point in Research-Operations-Applications funnel
» Lots of research/development, one system in operations
« Computational efficiency

Maintenance

— Minimize work needed for transfer (R20, O2A, from machine to machine, etc)
* Unified approaches preferred if performance not sacrificed

Interconnectedness

— Each piece of operations intimately connected with rest of system
* Incremental improvements to existing system OR
» Very careful long-term planning for major upgrades



ENSEMBLE DEVELOPMENT CONSIDERATIONS
Common scientific principles - Chaos affects all spatial/temporal scales

— Quantify all forecast uncertainty - Inseparable from forecasting in general
— Links with observing system, data assimilation, numerical modeling, user applications

— Represent all forecast uncertainty at their source - Otherwise poor reliability
* Only chance to propagate true uncertainty through forecast process

Unified approach
— Common techniques across applications wherever appropriate / possible
Ensemble team members

— Work in implementation teams, coordinated with rest of EMC & NCO
— Interact with broader research and user communities

Adaptive

Initial

Model

Statistical

Product

COMPONENT Observations | Perturbations | Perturbations | Post-Proc. | Generation Vertfication
Obs. System Data Numerical
FORECAST SYSTEM LINK Design Assimilation Modeling
APPLICATION | PEOPLE | Masutani, Wei Hou Du | Cui, Pena | Zhou, zhu | M4 Zhou.
Song, Hou
Coupled Pena
Global Zhu, Wobus
Regional Du
High-Impact
Ocean wave Chen
Sea lce Grumbine
Riverflow/ Land-
Hou
surface




