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OUTLINE / SUMMARY

• OBJECTIVE OF ENSEMBLE FORECASTING
– GENERATE FINITE SAMPLE OF PLAUSIBLE SOLUTIONS

• NCEP ENSEMBLE FORECAST SYSTEMS
– SEASONAL
– GLOBAL
– REGIONAL
– HIGH IMPACT

• COMPONENTS OF ENSEMBLE FORECASTING
– INITIAL PERTURBATIONS

• Interface with DA
– MODEL-RELATED PERTURBATIONS

• Interface with numerical modeling
– STATISTICAL CORRECTIONS

• Bias correction – Correcting lead time dependent systematic errors
• Downscaling – No forecasting involved

– APPLICATIONS
• Decision Support Systems



• Background
– Direct computation of analytical / continuous forecast pdf not achievable

• Louiville eqs. excessively expensive

• Substitute goal
– Generate finite sample of solutions representing underlying forecast pdf

• Likelihood of solutions (equal or not equal) must be known to estimate pdf
– Constraints

• Maximize statistical resolution
– Narrow pdf as much as possible while maintaining

• Provide good statistical reliability
– Realism/fidelity of solutions AND/OR
– Statistical corrections

OBJECTIVE OF ENSEMBLE FORECASTING



• Estimate & sample initial pdf
– Dynamically conditioned perturbations

• Link with DA

• Represent model related uncertainty
– Consider each model component

• Link with numerical modeling

• Statistically correct ensemble output
– Remove lead-time dependent bias

• How large sample do we need?
– Downscale bias-corrected forecasts

• Relationship between high & low-res analysis fields OR
• LAM

• Apply statistically corrected ensemble output
– Inter / extrapolate ensemble data for continuous pdf
– Drive downstream applications with ensemble trajectories

WHAT’S NEEDED TO ACHIEVE GOAL?



2010?Nov.  2007March 27th 20072004Implementation

?
Bias correction

(Recursive filter, 
each member

Bias correction
(Recursive filter,

all members)

Based on 25 yrs 
hindcastsPost-processing

6-12 hrs87 hrs16 days (384 hours)10 mosForecast length
?16+520LaggedPerturbed members

YesYes (5)Yes (hi-lo)YesControl member(s)

5-10 km, 1 hrly32-45 km, 3 hrlyT126L28 (d0-d16)
~90km 6, hrly

T62L64 (atm), 1/3-
1 deg (ocean), 
daily

Spatial resolution / 
Output freq.

On demand03, 09, 15, 21 
12UTC00, 06, 12, 18 UTCTwice/daySchedule

Hurricane WRFNoneRelocationNoneTropic. storm spec.
?NoneNone (Planned)NoneStochastic physics

YesMult. conv. 
schemesNoneNoneModel diversity

From regional 
ensemble

From global 
ensembleFixed SSTNoneBoundary 

perturbations

?BreedingET with RescalingLaggedInitial uncertainty

Relocatable WRFETA (10), RSM (5), 
WRF(2*3)GFSGFS+MOM3

Coupled modelModel

HIGH IMPACT
(Under design)REGIONALGLOBALSEASONALSYSTEM /

COMPONENT

NCEP ENSEMBLE SYSTEMS – NOV. 2007

Thurs. talk



Lagged scheme twice daily

Truth
todayday =-1day =-2day =-3

30-member ensemble generated during previous 15 days

Most recent forecast

f00

Lagged

NCEP CLIMATE FORECAST SYSTEM (CFS)



NORTH AMERICAN ENSEMBLE FORECAST SYSTEM
International project to produce operational multi-center ensemble 

products

• Combines global ensemble forecasts from Canada & USA
– 40 members per cycle, 2 cycles per day from MSC & NWS

• 6-hourly output frequency
• Forecasts out to 16 days

• Generates products for
– Weather forecasters

• E.g., NCEP Service Centers (US NWS)
– Specialized users

• E.g., hydrologic applications in all three countries
– End users

• E.g., forecasts for public distribution in Canada (MSC) and Mexico (NMSM)

• Operational outlet for THORPEX research using TIGGE archive
– Prototype ensemble component of THORPEX Global Interactive Forecast 

System (GIFS)



YesYesControl 

Bias correction 
for each member

Bias correction
for ensemble mean

Post-process

Yes None (Planned)Stochastic physics

16 days (384 hours)16 days (384 hours)Forecast length

YesNoneModel diversity

NoneRelocationTropical storm specif.
00 and 12UTC00, 06, 12, 18 UTCDaily frequency

July 10th 2007March 27th 2007Last implementation 

20 for each cycle20 for each cycleEnsemble members

(d0-d16)
~1.0degree

T126L28 (d0-d16)
~90km

Resolution

EnKFET with RescalingInitial uncertainty
GEMGFSModel
CMCNCEP

NAEFS CONFIGURATION
July 2007

Yuejian Zhu



Reliability of SREF21-based Probabilistic Forecasts

At 45hr

Jun Du



SREF Percentage of excessive outliers (41-case average)

SLP 500H

850T 850U

250U 850RH

New: - - - - -
Old: --------

Jun Du

More physics 
diversity helps 

improve outlier stats 



HIRES Window 2007 UpgradeHIRES Window 2007 Upgrade
Domain Size ChangesDomain Size Changes

Current Large & Small Domains

5.2 km for WRF-NMM

5.8 km for WRF-ARW

New Large Domains

4.0 km for WRF-NMM

5.1 km for WRF-ARW

Small domain size is unchangedJun Du



• DA Objective regarding initial conditions (Output)
– Reduce growing errors
– Eliminate non-growing errors

• DA requirement regarding forecasting (Input)
– Plausible model trajectories (on attractor)
– Associated forecast error covariance estimate

• Ensemble forecasting objective (Output)
– Capture forecast error covariance

• Ensemble forecasting requirement (Input)
– Analysis error variance

SYNERGY BETWEEN DA & ENSEMBLE FORECASTING
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SYNERGY BETWEEN DA & ENSEMBLE FORECASTING - 2

• For best DA/EF performance
– Ensemble must capture expanding perturbations on slow manifold =>

• Use breeding concept to generate ensemble
– Introduce orthogonalization (Ensemble Transform)

• Maximizes efficiency
– Use simplex transformation

• Centers perturbations around unperturbed analysis
• Provides temporal consistency in perturbations (series of perturbed analyses)

– Rescale perturbations
• Sets initial variance according to analysis error estimate

– Needed if ensemble membership is limited

• Couple with best available DA scheme
– DA provides analysis error variance to EF
– EF provides forecast error covariance to DA

• Ensemble-based DA methods (NOAA THORPEX work)
– Must be based on same principles

• 2-way interactions tuned simultaneously



P1

N1

P2

N2

P#, N# are the pairs of positive and negative

P1 and P2 are quasi-independent vectors

Geographically dependent rescaling

Ensemble Transform Bred Vector
(Current system)

Ensemble Transform: P1, P2, P3, P4 are 
orthogonal vectors (ET)

•No pairs any more

Simplex Transormation: Centralizes perturbations
vectors (sum of all vectors are equal to zero)

Geographical Rescaling: Initial perturbation 
variance representative of analysis error variance

Rescaling

ANL

ANLANL

Bred Vector
(Former system)

P1 forecast

P4 forecast
P3 forecast

P2 forecast

t=t1t=t0 t=t0t=t2 t=t2t=t1

Rescaling

Wei et al.   2006, 2007



Members 1-20
6hrs

Members 21-40

Members 41-60

Members 61-80

16-day forecast

6-HOUR BREEDING CYCLE WITH ET / RESCALING
00Z ET / Rescaling

18Z ET / Re-scaling

12Z ET / Rescaling

06Z ET / Rescaling

16-day forecast

21-40
41-60
61-80

16-day forecast

16-day forecastWei et al.   2006, 2007



PROPERTIES OF BRED/ET/SIMPLEX/RESCALED 
PERTURBATIONS

• Flow dependent growth
– Breeding

• Support DA goal of reducing growing errors
• Orthogonal

– ET
• Efficiently spans growing subspace

• Centered on analysis
– Simplex transformation

• Best performance
• Temporally consistent

– Simplex transformation
• Important for wave, land surface etc ensembles where perts depend on the 

history
• Reflective of analysis uncertainty

– Rescaling
• Needed to improved forecast error covariance estimates

Wei et al.   2006, 2007



ESTIMATING ANALYSIS ERROR VARIANCE

• Current version of GSI does not provide explicit estimate

• How to produce case dependent analysis error estimates?
– Courtier & Fisher 1995

• Add-on feature to 3DVAR provides GSI-specific approximation
– Statistically convert estimates for analysis variables

– Inter-comparison of analyses from multiple centers
• Default estimate (not GSI-specific)

• Use case-dependent 3D analysis error estimate
– In total energy norm in

• Ensemble Transformation as norm
• Geographical rescaling as a mask

Wei et al.   2006, 2007



• Numerical modeling community’s objective (Output)
– Realism / fidelity of simulations

• Numerical modeling community’s requirement (Input)
– Reduction of forecast uncertainties

• Ensemble forecasting objective (Output)
– Assessment of forecast uncertainties

• Ensemble forecasting requirement (Input)
– Model related uncertainties

SYNERGY BETWEEN NUMEREICAL MODELING & 
ENSEMBLE FORECASTING

A
ss

es
sm

en
t o

f m
od

el
-r

el
at

ed
 e

rr
or

s
N

on-linear ensem
ble 

filtering of errors



SYNERGY BETWEEN NWP MODELING & ENSEMBLE - 2
• For best NWP/EF performance

– Ensemble must capture all model related uncertainties at their origin
• Otherwise uncertainty cannot be traced 

– From origin (particular model problem)
– To destination (particular forecast aspect)

New NWP paradigm
• Systematically assess uncertainty in every component of NWP models

– Prioritize work according to expected impact on ensemble

• Reconstruct model components so they can simulate uncertainty
– Stochastic effect of truncation on resolved scales, in

• Space (Subgrid-scale dynamics)
• Time (Numerical accuracy)
• Physics (Effect of parameterizations)
• Etc

• Single model capable to (closely) reproduce nature with
– Certain space/time configuration

Alternative
• Use of multiple forms/versions of models

– Theoretically unappealing
• Finite number of unconnected imperfect replicas of nature



REPRESENTING MODEL RELATED UNCERTAINTY:
A STOCHASTIC PERTURBATION (SP) SCHEME

General Approach: Add a stochastic forcing term 
into the tendencies of the model eqs

Strategy: Generate the S terms from (random) 
linear combinations of the conventional 
perturbation tendencies.

Desired Properties of Forcing
1.   Applied to all variables
2.   Approximately balanced 
3.   Smoothly varying in space and time
4.   Flow dependent
5.   Quasi-orthogonal

Example of Combination Coefficients

Reduced number of excessive outliers

Reduced  bias

Comparable RMSE

Increase Spread

Increased Spread

---- Operation
---- Operation + SP
---- Operation +

optimal pp
(upper limit)Improved

Probabilistic 
Performance

Goal: Represent effect of unresolved processes

Dingchen Hou



• Stat Post-processing Objective (Output)
– Calibrated pdf

• Stat Post-processing requirement (Input)
– NWP forecasts

• Ensemble forecasting objective (Output)
– Sample of trajectories

• Ensemble forecasting requirement (Input)
– Statistical reliability

SYNERGY BETWEEN STATISTICAL POSTPROCESSING & 
ENSEMBLE FORECASTING
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SYNERGY BETWEEN STATISTICAL POSTPROCESSING & 
ENSEMBLE FORECASTING - 2

• For best EF/SPP performance
– Fully couple EF & SPP

• Use Bayesian estimator to optimally combine
– Prior (climate cdf)
– Ensemble forecast information

• Raw trajectories
• Joint sample of ensemble and observed trajectories (error statistics)

• Forecast cdf bias correction on model grid (30-120 km)
– How important this step is (perfect ensemble assumption good)?
– How large sample is needed?

• Downscaling to fine grid (~5 km)
– Based on relationship between coarse and fine resolution analysis fields

• No hind-casts needed!



Fcst: 24hr Ensemble Mean  & Bias Before/After Downscaling 10%

Before Before

After Bo Cui

4-day gain

Significant bias reduction on fine grid



dr=dual resolution, bc=bias correction, ds=downscaling, raw=direct output

• Impact of bias correction (cyan vs green) is small (hrs)
– Compared to downscaling (green vs. red, days)

• Hires adds useful info (blue vs. cyan, up to 1 day)

Bo Cui

4-day gain

Up to 40% error reduction



2m Temperature: Continuous Ranked Probability Score (CRPS) 
Average for 20070212 to 20070404   

Preliminary results:
Major improvement in skill of 

fine-scale forecasts: Downscaled & 
bias-corrected ensemble forecasts 
have significant improvements 
compared with raw & calibrated 
forecast for all lead time 
(downscaled 5+day forecast as 
skillful as raw 6-hr forecast) 

10% weighting is better than 2% 
and 5% weighting in short range. 
~30% improvement with 10% 
weighting for d0-d4. The 2%, 5% 
and 10% weighting curves are close 
for long range. Will add more high 
weights for comparison. 

Limitation:  
small samples
more samples needed  

Before / after bias correction  

After downscaling

Bo Cui

5-day gain

Up to 33% error reduction



• Product generation Objective (Output)
– Any user product

• Product generation requirement (Input)
– Single value estimate of atmospheric condition

• Ensemble forecasting objective (Output)
– “Forcing” trajectories

• Ensemble forecasting requirement (Input)
– User relevant information

SYNERGY BETWEEN PRODUCT GENERATION & 
ENSEMBLE FORECASTING
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SYNERGY BETWEEN PRODUCT GENERATION & 
ENSEMBLE FORECASTING - 2

• For best EF/PG performance
– Fully couple EF & PG

• Use each ensemble trajectory of weather to 
– Simulate corresponding user relevant events

• Powerful quantitative assessment of expected effect of weather on user operations

– Decision Support System must be based on quantitative analysis of results

• Alternatives
– Various types of qualitative analyses can also be useful in 

• Complex situations that are hard to quantitatively assess
– Related to summary statistics from ensemble can be used



Ensemble Streamflow Forecast
Two Possible Approaches

One way and two way coupling

Experimental Medium-range Ensemble Streamflow Forecasts 
Based on Coupled GFS-Noah Ensemble Runoff Forecast

Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Runoff
(ensemble)

Fluxes

Post Processor

Optional
bias correction

Final Products

Atmospheric
Model (GFS)

Land Surface
Model (Noah)

River Routing Model

Precipitation

Streamflow
(ensemble)

CTL

ENS_Mean - CTL
Difference

(Mean of member
Scores)
-(CTL score)
Difference

GFS-CTL Difference

Ranges:
(m**3/s)

>2000m
1000-
2000
500-1000
300-500
200-300
70-90
35-45
15-20

>2000m**3/
s
1000-2000

500-1000
300-500

200-300
70-90
35-45
15-20

>2000m**3/
s
1000-2000500-1000

300-500

200-300
70-90
35-45
15-20

Without Bias-
correction

After Bias-
correction

00

Discussion: 
Although the bias-removal can not be applied 
in operational forecasting, practical bia-
correction algorithms may have similar effect.

Observations:
• Positive skill for the large river 
basins.
• Improvement due to bias-
correction.
• Positive skill for all river basins 
after bias correction.

Temporal Correlation

CRPSS



Potomac River, Washington DC
A Medium Sized Basin, May 4th

Mississippi River, Vicksburg MS
ALarge Sized Basin, May 4th

Nehalem River, Foss OR
A Small Sized Basin, April 1st

0        2            4          6          8        10         12        14        16
Lead Time  (days)

0        2            4          6          8        10         12        14        16
Lead Time  (days)

----- GEFS members
----- GEFS ens. mean
----- GEFS control
----- GFS high resolution
----- NLDAS

0        2            4          6          8        10         12        14        16
Lead Time  (days)

Summary of Results

Distributed river routing ensemble system 
(coupled GEFS, Noah and the river routing 
model used) works well with the variability in 
the ensemble streamflow forecasts being of the 
same order of magnitude as the error in the 
mean of the ensemble
For large basins, the ensemble streamflow
forecasts appear to capture well the variations 
in the NLDAS analysis of streamflow
For medium- and small-sized basins, a serious 
under-dispersion is present in the spread of the 
ensemble streamflow forecasts. This is likely 
due to a lack of sufficient variability in the 
precipitation forcing on the scale of the chosen 
river basin

Dingchen Hou
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OUTLINE / SUMMARY

• OBJECTIVE OF ENSEMBLE FORECASTING
– GENERATE FINITE SAMPLE OF PLAUSIBLE SOLUTIONS

• NCEP ENSEMBLE FORECAST SYSTEMS
– SEASONAL
– GLOBAL
– REGIONAL
– HIGH IMPACT

• COMPONENTS OF ENSEMBLE FORECASTING
– INITIAL PERTURBATIONS

• Interface with DA
– MODEL-RELATED PERTURBATIONS

• Interface with numerical modeling
– STATISTICAL CORRECTIONS

• Bias correction – Correcting lead time dependent systematic errors
• Downscaling – No forecasting involved

– APPLICATIONS
• Decision Support Systems
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BACKGROUND



NAEFS BENEFITS
• Improves probabilistic forecast performance

– Earlier warnings for severe weather
• Lower detection threshold due to more ensemble members
• Uncertainty better captured via analysis/model/ensemble diversity (assumed)

• Provides Seamless suite of forecasts across
– International boundaries

• Canada, Mexico, USA
– Different time ranges (1-14 days)

• Saves development costs by
– Sharing scientific algorithms, codes, scripts

• Accelerated implementation schedule
• Low-cost diversity via multi-center analysis/model/ensemble methods

– Exchanging complementary application tools
• MSC focus on end users (public)
• NWS focus on intermediate user (forecaster)

• Saves production costs by 
– Leveraging computational resources

• Each center needs to run only fraction of total ensemble members
– Providing back-up for operations in case of emergencies

• Use nearly identical operational procedures at both centers to provide basic products
• Offers as default basic products based on unaffected center’s ensemble



NAEFS HISTORY & MILESTONES
• February 2003, Long Beach, CA

– NOAA / MSC high level agreement about joint ensemble research/development 
work (J. Hayes, L. Uccellini, D. Rogers, M. Beland, P. Dubreuil, J. Abraham)

• May 2003, Montreal (MSC)
– 1st NAEFS Workshop, planning started

• November 2003, MSC & NWS
– 1st draft of NAEFS Research, Development & Implementation Plan complete

• May 2004, Camp Springs, MD (NCEP)
– Executive Review

• September 2004, MSC & NWS
– Initial Operational Capability implemented at MSC & NWS

• November 2004, Camp Springs
– Inauguration ceremony & 2nd NAEFS Workshop

• Leaders of NMS of Canada, Mexico, USA signed memorandum
• 50 scientists from 5 countries & 8 agencies

• May 2006, Montreal
– 3rd NAEFS Workshop

• May-Oct 2006, MSC & NWS
– 1st Operational Implementation

• Bias correction
• Climate anomaly forecasts

• 2007-2008, MSC, NWS
– Follow-up implementations

• Improved and expanded product suite



Outliers: H500, day 6 forecast, 20041002
Without SP

large number of outliers with 
negative and positive forecast bias

With SP
the number of outliers is

significantly reduced



…………
…………

G_I G_I G_IG_I

G_RG_R G_R

G_R G_R

G_R

G_R

G_R G_R

G_R G_R

…………

G_R

Cpl_Run

Cpl_Run

Cpl_Initialize

Main Drive

…………………………………………………..
…………………………………………………..………

………….
G_F G_F G_F G_F………….

Cpl_Finalize

END

G_I  --- GFS Initialize
G_R --- GFS Run
G_F --- GFS Finalize

Main Driver
NCEP ESMF GEFS 
CONCURRENT INTEGRATION



Ensemble Streamflow Forecast
Two Possible Approaches
Coupled and Uncoupled

Atmospheric
Model (GFS)

Land Surface
Model (Noah)

River Routing Model

Runoff
(ensemble)

Precipitation

Land Surface 
Model (Noah)

Runoff
(Ensemble)

River Routing Model

Streamflow
(ensemble)

Streamflow
(ensemble)

Bias-corrected
precipitation

Fluxes Land
Forcing

Experimental Medium-range Ensemble Streamflow Forecasts 
Based on Coupled GFS-Noah Ensemble Runoff Forecast
Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Post Processor

Precipi-
tation

Post Processor

Post Processor

Final Products

Background:
Land Surface component of NCEP coupled 

weather/climate prediction models (Mitchell et al, 
2005) facilitates streamflow forecasts from theses 
coupled systems.

River routing experiment in analysis mode of the 
NLDAS project (Lohmann et al, 2004) revealed 
potential extension to river flow forecasts in 
coupled prediction models.

Existence of uncertainty in initial conditions, 
model structure and land surface forcing needs to 
be considered with an ensemble approach.

Purpose:
Demonstrate feasibility of gridded medium-range

river flow forecast in operational NCEP Global 
Ensemble Forecast System (GEFS).

Develop strategy to represent uncertainties.
Extent the concept to the seasonal range by 

utilizing ensemble coupled CFS/Noah prediction of 
runoff in the future.

General Strategy:
NLDAS stream flow analysis used as initial 

condition and verification;
Extension to global domain in mind with domestic 

and international users;
Hind cast data set to be generated for post 

pressing.



Representing Model Related Uncertainty
A Proposed Stochastic Perturbation Scheme

Strategy: Generate the S terms from 
(random) linear combinations of the 
conventional perturbation tendencies.

General Approach: Adding a stochastic 
forcing term in to the tendencies of the 
model equations.
Assumption: The perturbations (difference 
between ensemble members and the 
control) in the conventional tendencies 
provide a sample of realizations of the 
additional stochastic forcing S. 

Desired Properties 
1.    Forcing applied to all variables
2.   Approximately balanced 
3.   Smooth variation in space and time
4.    Flow dependent
5.    Quasi-orthogonal
Expected Results
Increased spread
Reduced systematic error
Improved probabilistic forecast



Statistics: Ensemble Spread and Error of Ensemble Mean
Increased Spread, Reduced Mean Error (ME)

Reduced Mean Absolute Systematic Error (MASE)
----- Without SP      ------- With SP

h

t
afMASE −=MASE

Mean ErrorMean Error

Solid, rmse
Dash: spread

Solid: rmse
Dash: spread



Comparison with Post-Processing (PP) 
RPSS: Improved in both cases (SP and PP)

SP is more effective in week 2 forecast

---- Without SP
---- With SP
---- Without SP

but optimal pp
(upper limit)

---- Operation
---- Operation +1%PP
---- Operation +

optimal pp
(upper limit)

Stochastic Parameterization (SP) Bias-correction (1%PP)



Ensemble Streamflow Forecast
Two Possible Approaches

One way and two way coupling

Experimental Medium-range Ensemble Streamflow Forecasts 
Based on Coupled GFS-Noah Ensemble Runoff Forecast

Dingchen Hou, Kenneth Mitchell, Zoltan Toth, Dag Lohmann and Helin Wei

Runoff
(ensemble)

Fluxes

Post Processor

Precipi-
tation

Post Processor

Post Processor

Final Products

Atmospheric
Model (GFS)

Land Surface
Model (Noah)

River Routing Model

Precipitation

Land Surface 
Model (Noah)

Runoff
(Ensemble)

River Routing Model

Streamflow
(ensemble)

Streamflow
(ensemble)

Bias-corrected
precipitation

Land
Forcing

CTL

ENS_Mean - CTL
Difference

(Mean of member
Scores)
-(CTL score)
Difference

GFS-CTL Difference

Ranges:
(m**3/s)

>2000m
1000-
2000
500-1000
300-500
200-300
70-90
35-45
15-20

>2000m**3/
s
1000-2000

500-1000
300-500

200-300
70-90
35-45
15-20

>2000m**3/
s
1000-2000500-1000

300-500

200-300
70-90
35-45
15-20

Without Bias-
correction

After Bias-
correction

00

Discussion: 
Although the bias-removal can not be applied 
in operational forecasting, practical bia-
correction algorithms may have similar effect.

Observations:
• Positive skill for the large river 
basins.
• Improvement due to bias-
correction.
• Positive skill for all river basins 
after bias correction.

Temporal Correlation

CRPSS



HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

• Proposed solution: Dynamical sampling in growing sub-
space – ET / ETKF

• Link with DA (GSI – ET)
• Need collaboration between DA and ensemble teams.
• Take error variance from GSI to specify ensemble perturbations
• Feed back information from ensemble into background error covariance.
• ET provides series of perturbed analyses consistent in time

– Important for wave, land surface ensembles etc  where perts depend 
on the history.

• Ensemble-based DA – ETKF
• Same ensemble principles, except 2-way interactions tuned 

simultaneously.



Unified EFS and DA

EFS and DA systems must be consistent for best 
performance of both.

SSI/GSI currently provides best estimate of analysis, GSI will be 
used to derive analysis uncertainties (error variance) for EFS.    

EFS produces flow dependent forecast (background) error 
covariance to be tested in GSI later.          

))(( adiag P

GSI EFS
fP

Best analysis error variances

Accurate forecast error covariance

A Hybrid DA-EFS System

Bor



SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT’S KNOWN – FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION
THEORETICAL UNDERSTANDING – THE MORE ADVANCED A SCHEME IS 

(e. g., 4DVAR, Ensemble Kalman Filter)
• The lower the overall error level is
• The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES –
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
• Statistical approach (dynamically growing errors neglected)

• Selected estimated statistical properties of analysis error reproduced
• Baumhefner et al – Spatial distribution; wavenumber spectra
• ECMWF – Implicite constraint with use of Total Energy norm

• Dynamical approach – Breeding cycle (NCEP)
• Cycling of errors captured
• Estimates subspace of dynamically fastest growing errors in analysis 

• Stochastic-dynamic approach – Perturbed Observations method (MSC)
• Perturb all observations (given their uncertainty)
• Run multiple analysis cycles
• Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES – SEVERAL OPEN QUESTIONS

• RANDOM SAMPLING – Perturbed observations method (MSC)
– Represents all potential error patterns with realistic amplitude
– Small subspace of growing errors is well represented
– Potential problems:

• Much larger subspace of non-growing errors poorly sampled,
• Yet represented with realistic amplitudes

• SAMPLE GROWING ANALYSIS ERRORS – Breeding (NCEP)
– Represents dynamically growing analysis errors
– Ignores non-growing component of error
– Potential problems:

• May not provide “wide enough” sample of growing perturbations
• Statistical consistency violated due to directed sampling? Forecast consequences?

• SAMPLE FASTEST GROWING FORECAST ERRORS – SVs (ECMWF)
– Represents forecast errors that would grow fastest in linear sense
– Perturbations are optimized for maximum forecast error growth
– Potential problems:

• Need to optimize for each forecast application (or for none)?
• Linear approximation used
• Very expensive



T00Z

56m

T06Z

56m

T18Z
56m

T12Z
56m

6hrs Next T00Z

Re-scaling

Re-scaling

Re-scaling

Up to 16-d

Up to 16-d

Up to 16-d

Up to 16-d

T00Z

80m

6hrs

T06Z

80m

T12Z

80m

T18Z

80m

Up to 16-d

Up to 16-d

Up to 16-d

Up to 16-d

Re-scaling

Re-scaling

Re-scaling

Re-scaling

6 hours breeding cycle
Production

6 hours breeding cycle
Planned Change

Next T00Z
Re-scaling



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

• DATA ASSIM: Growing errors due to cycling through NWP forecasts
• BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

– Sample subspace of most rapidly growing analysis errors
• Extension of linear concept of Lyapunov Vectors into nonlinear environment
• Fastest growing nonlinear perturbations
• Not optimized for future growth –

– Norm independent
– Is non-modal behavior important?



LYAPUNOV, SINGULAR, AND BRED VECTORS
• LYAPUNOV VECTORS (LLV):

– Linear perturbation evolution
– Fast growth
– Sustainable
– Norm independent
– Spectrum of LLVs

• SINGULAR VECTORS (SV):
– Linear perturbation evolution
– Fastest growth
– Transitional (optimized)
– Norm dependent
– Spectrum of SVs

• BRED VECTORS (BV):
– Nonlinear perturbation evolution
– Fast growth
– Sustainable
– Norm independent
– Can orthogonalize (Boffeta et al)



PERTURBATION EVOLUTION
• PERTURBATION GROWTH

– Due to effect of instabilities
– Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS
– Associated with phenomena
– Nonlinear interactions limit perturbation growth
– Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION
– May be valid at beginning stage only
– If linear models used, need to reflect nonlinear effects at given perturb. 

Amplitude
• BREEDING

– Full nonlinear description
– Range of typical perturbation amplitudes is only free parameter



• Estimate analysis uncertainty
• Choices among sampling strategies, given an estimate

– Monte Carlo type sampling – “Perturbed Observations” method
• Run multiple analysis cycles with perturbed observations (Canadian approach).
• Both growing and non-growing error space sampled with realistic amplitude.
• Noise introduced hurts analysis performance.

– Directed sampling
• Singular vectors – fastest growth for pre-selected time period (ECMWF)

– Transient growth emphasized.
– Computationally very expensive.
– No general solution: depending time interval and norm.
– Norm most frequently used is uncoupled from analysis error estimates.
– No success in DA applications.

• Dynamical sampling in growing sub-space (NCEP)
– Based on principle of breeding: Cycle growing perturbations

» Capture dynamics of system responsible for error growth.
» Ignore noise.
» Successfully used in most ensemble-based DA efforts: eg, ETKF, etc.

HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?
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Computing analysis error variance from multi-center analysis data

One way to get 3-dimensional flow-dependent analysis error variance for 
generating initial ensemble perturbations in  ET (Ensemble Transform) is 
to use different analysis fields  from different NWP centers. 

(a).  Choose some common variables from the analysis data we have few 
different centers, such as NCEP, ECMWF, UKMET, MSM, JMA, US NAVY etc.          

(b).  Remove the systematic bias from each center’s analysis data by using a 
recursive  filter.

(c).  Compute the analysis error variance in kinetic energy or total energy norm
using analysis data from different centers.

(d).  Apply the 3-D analysis error variance to ET transformation and rescaling.



Deriving the analysis  error variance from GSI
Another way to get 3-dimensional flow-dependent analysis error variance is from
NCEP operational data assimilation system (GSI).  

The method is based on Fisher and Courtier (1995), ECMWF Tech Memo. No. 220.   
It takes advantage of the connection between the conjugate gradient method which 
is being used in GSI and Lanczos method.

(a). Modify and run GSI  to  produce the gradient vectors from the preconditioned
conjugate gradient method.

(b).  Run an external program (independent of GSI operation) based on the Lanczos
method to read the gradient files produced by GSI and generate the dominant
eigenvectors  and eigenvalues of the Hessian matrix.

(c). The analysis error covariance matrix will be reconstructed from the leading   
eigenvectors and eigenvalues of the Hessian which is the inverse of analysis
error covariance.

(d) .The analysis error variances of GSI variables will need to be converted to those
of model variables.



Analysis error variance used in ET and ET with rescaling
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analysis error variance.  However, they are not centered. Centering will be done by a 
simplex transformation which preserves analysis error covariance.  
For details, see Wei, Toth, Wobus and Zhu (2007), Initial perturbations based  on the ensemble 
transform (ET) technique in the NCEP global operational forecast system, Tellus A, in print.
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Finally, the transformed perturbations will be rescaled at multi-levels  using the analysis 

error variance in the same way as in Toth and Kalnay (1993, 1997). 
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BACKGROUND - 2



• Assess current weather situation
– Before we can look into future, understand what is happening now
– “Initial condition”

• Digest observational information
– Bring observed data into “standard” format
– “Data assimilation”

• Project initial state into future
– Based on laws of physics
– “Numerical Weather Prediction” (NWP) model forecasting

• Apply weather forecast information
– Statistical post-processing
– “User applications”

FORECASTS ARE NOT PERFECT – WHY?

THE MAKINGS OF A WEATHER FORECAST –
HOW FORECASTS ARE MADE? 



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
• Incomplete observing system (not all variables observed)
• Inaccurate observations (instrument/representativeness error)
• Imperfect data assimilation methods

• Statistical approximations (eg, inaccurate error covariance information)
• Use of imperfect NWP forecasts (due to initial and model errors) –
• Effect of cycling (forecast errors “inherited” by analysis – use breeding)

GOVERNING EQUATIONS:
• Imperfect model

• Structural uncertainty (eg, choice of structure of convective scheme)
• Parametric uncertainty (eg, critical values in parameterization schemes)
• Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
• Two main sources of forecast errors hard to separate =>
• Very little information is available on model related errors 
• Tendency to attribute all forecast errors to model problems 

CAN REDUCE, BUT NEVER ELIMINATE ERRORS



EVER IMPROVING, BUT ALWAYS IMPERFECT – WHY?



Gain in 5 yrs = 0.06 or
~15 hrs

Gain per year = 
2% rms error reduction

Gain in 5 yrs = 15 hrs or
6 m (10%)

WHY ERRORS AMPLIFY?



SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY 
ARISING DUE TO CHAOS

Buizza 2002



• Potential economic value of probabilistic forecasts
– “…the value of reliable – and even moderately unreliable – probabilistic forecasts 

generally exceeds the value of … categorical forecasts” - Murphy 1977

• Potential economic value of ensemble forecasts
– “… a winder range of potential users can benefit from the ensemble than from 

the control forecasts … the ensemble offers more economic value than the 
control forecasts” – Zhu el al. 2002

• Operational forecasting implications
– “…important implications for operational forecasting … desirability of formulating 

and disseminating a wide variety of weather forecasts in probabilistic terms…”
Murphy 1977

– “A weather forecast is … not complete unless it is expressed in the form of 
probability distributions.” - Zhu el al. 2002

– “Uncertainty is thus a fundamental characteristic of weather, climate, and 
hydrological prediction, and no forecast is complete without a description of its 
uncertainty.” NRC Report: “Completing the Forecast”, Ban et al., 2006

VALUE OF PROBABILISTIC FORECASTING



USER REQUIREMENTS:
PROBABILISTIC FORECAST INFORMATION IS CRITICAL



• Forecast process has errors
– Initial condition, model not perfect

• Errors can be reduced, but never eliminated
– Main (only) NWP thrust so far: reduction of uncertainty

• Atmosphere is chaotic system
– Any error amplifies

• Predictability is finite and
– Varies from case to case

• Users need to know about expected forecast errors
– Serious limitation otherwise

• Errors can be assessed
– Statistically

• Climatology of errors in single forecast
– Dynamically

• Ensemble forecasts

– New thrust in NWP is assessing uncertainty

ASSESSING FORECAST UNCERTAINTY



MOTIVATION FOR ENSEMBLE FORECASTING
• FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR:

– USERS:
• Need to know how often / by how much forecasts fail
• Economically optimal behavior depends on 

– Forecast error characteristics
– User specific application

» Cost of weather related adaptive action
» Expected loss if no action taken

– EXAMPLE: Protect or not your crop against possible frost
Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1
• NEED FOR PROBABILISTIC FORECAST INFORMATION

– DEVELOPERS:
• Need to improve performance   - Reduce error in estimate of first moment

– Traditional NWP activities (I.e., model, data assimilation development)
• Need to account for uncertainty - Estimate higher moments

– New aspect – How to do this?
• Forecast is incomplete without information on forecast uncertainty 
• NEED TO USE PROBABILISTIC FORECAST FORMAT

FORECASTS ARE NOT COMPLETE UNLESS UNCERTAINTY ASSESSED 



FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model
• Is not best estimate for future evolution of system

•Except if constrained by data in 4DVAR 
• Does not contain all attainable forecast information

•Case-dependent variations in forecast uncertainty missed
•4DVAR does not come with an ensemble generation algorithm

• Can be combined with past verification statistics to form probabilistic forecast
• Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
• Continuity equation for probabilities, given dynamical eqs. of motion

•Dynamical forecast of pdf based on conservation of probability values
•Initialize with probability distribution function (pdf) at analysis time
• Prohibitively expensive -

• Very high dimensional problem (state space x probability space)
• Separate integration for each lead time
• Closure problems when simplified solution sought



FORECASTING IN A CHAOTIC ENVIRONMENT –
PROBABILISTIC FORECASTING BASED A ON SINGLE FORECAST –

One integration with an NWP model, combined with past verification statistics
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

•Does not contain all forecast information

•Not best estimate for future evolution of system 

•UNCERTAINTY CAPTURED IN TIME AVERAGE SENSE -

•NO ESTIMATE OF CASE DEPENDENT VARIATIONS IN FCST UNCERTAINTY



SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY 
ARISING DUE TO CHAOS

Buizza 2002
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WHY ENSEMBLES?
TRADITIONAL PARADIGM
• Single value forecast incomplete from viewpoints of

– Science – Inherently statistically inconsistent with observations
– Applications – Significantly fewer users, with less value

• Probabilistic forecasts needed – Generate them through
– Single forecast integration

• Accumulate error statistics over many cases (“bias correction”, eg, MOS)
• Pro: Maximum possible fidelity in forecast - all comp. resources go into one solution

– Improved statistical reliability; Slight increase in statistical resolution
• Cons: Aggregate statistics - no case dependent variations in uncertainty captured

As errors become nonlinear, single solution becomes unrepresentative
– Loss of statistical resolution

– Liouville equations
• Theoretically proper solution in perfect model framework

– Pdf of initial state integrated in time
» Impractical, enormous computational costs

– Ensemble forecasts
• Multiple integrations started with sample from estimated initial pdf

– Provides multiple trajectories for critical downstream applications
• Time evolution of pdf captured in truncated form (how many members needed?)
• Ad-hoc methods aimed at capturing model related uncertainty

ENSEMBLE APPROACH



• Major paradigm shift 
– Incorporate assessment and communication of uncertainty in forecast process

• Is it a major change in course of “Weather Ship”?
– Ie, abandon course of ever improving single forecast scenario (expected value)?

• No – Expand, not abandon
– Keep improving fidelity of forecasts, PLUS
– Add new dimension

• Capture other possible scenarios – ensemble forecasting
– Use a flotilla, instead of one ship, in exploring nature

– Existing activities are subset of expanded forecast process
• Single value forecast is expected value of full probability distribution

– Can keep serving forecasts in old format to users who prefer that

PROPOSED CHANGE



Single forecast (driven by GFS winds) example for drifting virtual ice floe

Bob Grumbine, EMC

Initial position

7 September 2006 



Ensemble forecast for drifting ice floe for same case

Bob Grumbine, EMC

Initial position



Most likely forecast for drifting ice floe for same case

Bob Grumbine, EMC

Initial position



• Why users (should) care about forecast uncertainty?
– They admittedly want minimal or no uncertainty in forecasts

• Distinction between no uncertainty in the forecast, vs. not talking about it
– Forecast uncertainty cannot be arbitrarily reduced

• Despite major ongoing & continuing efforts, they persist forever
– Chaotic nature of atmosphere - land surface – ocean coupled system + initial/model errors
– Level of uncertainty is determined by nature and level of sophistication in forecast system

– Forecast uncertainty can be ignored though
• Negative consequence on informed users

– Not able to prepare for all possible outcomes
» Assumes a certain scenario and remains vulnerable to others

• Possibly serious loss in social/economic value of forecast information

• Why forecasters (should) care about forecast uncertainty?
– Imperfect forecasts are consistent w. observations (reliable) only if in prob format

• If in other format, must be brought into probabilistic format through 
– Verification / bias correction

WHY CHANGE IS NEEDED?



• More rationalized and enriched forecaster - user interactions
Old paradigm
– Convoluted forecaster-user decision process 

• User expects forecaster to make decision for them in presence of uncertainty
– “Will it rain?” – “80%” – “But tell me, will it rain?”

New paradigm
– Forecaster and user decision processes enhanced and better linked

• Allows forecasters to capture all knowledge about future conditions
– Provision of information related to multiple decision levels in probabilistic format critical

» Provider helps interpret probabilistic info & and modify user decision process if needed
» Option to continue providing single value or other limited info until user ready

• Allows users to decide about most beneficial course of action given all possibilities
– Proper use of probability or other uncertainty information needed - Training

» User requests critical weather forecast info depending on their sensitivity

ADVANTAGES OF PROBABILISTIC FORMAT



• Focus on single forecast scenario 
– Reducing uncertainty in single forecast is main emphasis

• Loss of accuracy in forecast estimate of expected value of distribution
– Mean of ensemble cloud provides better estimate

– Ignores or simplifies forecast uncertainty 
• Uncertainty assessed as statistically averaged error in single fcst (second thought)

– Ensemble cloud provides better estimate of case dependent variations in uncertainty
– Use of single value / categorical forecast format

• Difficulty in formulating/communicating plausible alternate scenarios
– Ensemble member forecasts can directly feed into Decision Support Systems

• One-way flow of information from observations to users
– Not adaptable to case dependent user requirements

• Ensemble can propagate back user requirements to adaptive
– Observing, assimilation, modeling/ensemble, post-processing and application components

» Applications in planning and execution of new CONOPS in high impact events

TRADITIONAL FORECAST PROCESS



OLD PARADIGM: 
Reduce Uncertainty FORECAST PROCESS 

NEW PARADIGM: 
Reduce & Assess 

Uncertainty 
Misconstrued 
determinism  NATURE Critical sensitivity to 

initial conditions - Chaos 
Reduce obs. uncertainty OBSERVING SYSTEM Quantify obs. uncertainty

Estimate expected value DATA ASSIMILATION Estimate distribution 

Reduce model errors NWP MODELING Reduce & represent 
model errors 

Ad hoc opportunities ENSEMBLE 
FORECASTING Systematic approach 

Reduce systematic error STATISTICAL POST-
PROCESSING Calibrate uncertainty 

Single value BASIC PRODUCTS Distributional 
characteristics 

Yes or No forecasts 
tailored for decisions 

USER SUPPORT 
SYSTEMS 

Incorporate forecast 
uncertainty info 

Limited forecast info - 
Restricted usage SOCIETY All forecast info – 

Optimal user decisions  
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Ensemble Forecasting:
Central role – bringing the pieces together

PROPAGATING FORECAST UNCERTAINTY



• Adopt ensemble approach across all environmental prediction activities
– Expand forecasting with new dimension of uncertainty

• Multiple scenarios (in place of single scenario)
– Provides best forecast estimate for both expected value (as before) and uncertainty (new)

– Unified scientific, technological, human approach
• Sharing resources across NWS & NOAA

– Ensemble is centerpiece both symbolically and figuratively in forecast process
• Ensembles act as a glue & two-way information channel

– Observing system, data assimilation, numerical modeling
» ENSEMBLES

– Statistical post-processing, product generation, decision making

• Design, develop, & implement missing components of new forecast process
– Gradual, measured steps

• Basic capability - Short-term, 2-3 yrs, leading to 
• Full implementation - Long-term, 5-10 yrs

HOW CAN IT BE DONE? NEW PARADIGM



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH – ENSEMBLE FORECASTING

• IDEA: Sample sources of forecast error
• Generate initial ensemble perturbations
• Represent model related uncertainty

• PRACTICE: Run multiple NWP model integrations
• Advantage of perfect parallelization
• Use lower spatial resolution if short on resources 

• USAGE: Construct forecast pdf based on finite sample
• Ready to be used in real world applications
• Verification of forecasts
• Statistical post-processing (remove bias in 1st, 2nd, higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY
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SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS ORIGINATING FROM TWO MAIN SOURCES

INITIAL CONDITION RELATED ERRORS – “Easy”
• Sample initial errors
• Run ensemble of forecasts
• It works 

• Flow dependent variations in forecast uncertainty captured (show later)
• Difficult or impossible to reproduce with statistical methods

MODEL RELATED ERRORS – No theoretically satisfying approach
• Change structure of model (eg, use different convective schemes, etc, MSC)
• Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
• Works? Advantages of various approaches need to be carefully assessed

• Are flow dependent variations in uncertainty captured?
• Can statistical post-processing replicate use of various methods?

• Need for a 
• more comprehensive and
• theoretically appealing approach 



SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT’S KNOWN – FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION
THEORETICAL UNDERSTANDING – THE MORE ADVANCED A SCHEME IS 

(e. g., 4DVAR, Ensemble Kalman Filter)
• The lower the overall error level is
• The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES –
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
• Statistical approach (dynamically growing errors neglected)

• Selected estimated statistical properties of analysis error reproduced
• Baumhefner et al – Spatial distribution; wavenumber spectra
• ECMWF – Implicite constraint with use of Total Energy norm

• Dynamical approach – Breeding cycle (NCEP)
• Cycling of errors captured
• Estimates subspace of dynamically fastest growing errors in analysis 

• Stochastic-dynamic approach – Perturbed Observations method (MSC)
• Perturb all observations (given their uncertainty)
• Run multiple analysis cycles
• Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES – SEVERAL OPEN QUESTIONS

• RANDOM SAMPLING – Perturbed observations method (MSC)
– Represents all potential error patterns with realistic amplitude
– Small subspace of growing errors is well represented
– Potential problems:

• Much larger subspace of non-growing errors poorly sampled,
• Yet represented with realistic amplitudes

• SAMPLE GROWING ANALYSIS ERRORS – Breeding (NCEP)
– Represents dynamically growing analysis errors
– Ignores non-growing component of error
– Potential problems:

• May not provide “wide enough” sample of growing perturbations
• Statistical consistency violated due to directed sampling? Forecast consequences?

• SAMPLE FASTEST GROWING FORECAST ERRORS – SVs (ECMWF)
– Represents forecast errors that would grow fastest in linear sense
– Perturbations are optimized for maximum forecast error growth
– Potential problems:

• Need to optimize for each forecast application (or for none)?
• Linear approximation used
• Very expensive



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

• DATA ASSIM: Growing errors due to cycling through NWP forecasts
• BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

– Sample subspace of most rapidly growing analysis errors
• Extension of linear concept of Lyapunov Vectors into nonlinear environment
• Fastest growing nonlinear perturbations
• Not optimized for future growth –

– Norm independent
– Is non-modal behavior important?



LYAPUNOV, SINGULAR, AND BRED VECTORS
• LYAPUNOV VECTORS (LLV):

– Linear perturbation evolution
– Fast growth
– Sustainable
– Norm independent
– Spectrum of LLVs

• SINGULAR VECTORS (SV):
– Linear perturbation evolution
– Fastest growth
– Transitional (optimized)
– Norm dependent
– Spectrum of SVs

• BRED VECTORS (BV):
– Nonlinear perturbation evolution
– Fast growth
– Sustainable
– Norm independent
– Can orthogonalize (Boffeta et al)



PERTURBATION EVOLUTION
• PERTURBATION GROWTH

– Due to effect of instabilities
– Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS
– Associated with phenomena
– Nonlinear interactions limit perturbation growth
– Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION
– May be valid at beginning stage only
– If linear models used, need to reflect nonlinear effects at given perturb. 

Amplitude
• BREEDING

– Full nonlinear description
– Range of typical perturbation amplitudes is only free parameter



• Estimate analysis uncertainty
• Choices among sampling strategies, given an estimate

– Monte Carlo type sampling – “Perturbed Observations” method
• Run multiple analysis cycles with perturbed observations (Canadian approach).
• Both growing and non-growing error space sampled with realistic amplitude.
• Noise introduced hurts analysis performance.

– Directed sampling
• Singular vectors – fastest growth for pre-selected time period (ECMWF)

– Transient growth emphasized.
– Computationally very expensive.
– No general solution: depending time interval and norm.
– Norm most frequently used is uncoupled from analysis error estimates.
– No success in DA applications.

• Dynamical sampling in growing sub-space (NCEP)
– Based on principle of breeding: Cycle growing perturbations

» Capture dynamics of system responsible for error growth.
» Ignore noise.
» Successfully used in most ensemble-based DA efforts: eg, ETKF, etc.

HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?



HOW TO REPRESENT INITIAL VALUE RELATED UNCERTRAINTY?

• Proposed solution: Dynamical sampling in growing sub-
space – ET / ETKF

• Link with DA (GSI – ET)
• Need collaboration between DA and ensemble teams.
• Take error variance from GSI to specify ensemble perturbations
• Feed back information from ensemble into background error covariance.
• ET provides series of perturbed analyses consistent in time

– Important for wave, land surface ensembles etc  where perts depends 
on the history.

• Ensemble-based DA – ETKF
• Same ensemble principles, except 2-way interactions tuned 

simultaneously.



P1

N1

P2

N2

P#, N# are the pairs of positive and negative

P1 and P2 are independent vectors

Simple scaling down (no direction change)

Ensemble Transform Bred Vector
(New)

P1, P2, P3, P4 are orthogonal vectors

No pairs any more

To centralize all perturbed vectors (sum of all 
vectors are equal to zero)

Scaling down by applying mask, 

The direction of vectors will be tuned by ET.

Rescaling

ANL

ANLANL

Bred Vector
(Current)

P1 forecast

P4 forecast
P3 forecast

P2 forecast

t=t1t=t0 t=t0t=t2 t=t2t=t1

Rescaling



Unified EFS and DA

EFS and DA systems must be consistent for best 
performance of both.

SSI/GSI currently provides best estimate of analysis, GSI will be 
used to derive analysis uncertainties (error variance) for EFS.    

EFS produces flow dependent forecast (background) error 
covariance to be tested in GSI later.          

))(( adiag P

GSI EFS
fP

Best analysis error variances

Accurate forecast error covariance

A Hybrid DA-EFS System

Bor



4.   Summary of Perturbation Properties4.   Summary of Perturbation Properties
(a).  Perts are centered around the analysis to improve ensemble mean.
(b). They have simplex structure, not paired. Ensures that perts will have 

maximum number of  effective degrees of freedom. The variance will 
be maintained in as many directions as possible  within the ensemble 
subspace.

(c).  They are uniformly centered and distributed in different directions. The 
larger the ensemble, the more orthogonal they become.  They become 
orthogonal if the number of  members approaches to infinity.

(d). The initial perts have flow dependent spatial structure if the analysis error 
variance is derived from operational DA system at every cycle.

(e).  The covariance constructed from the perts is approximately consistent with 
the analysis covariance from the DA if the number of ensemble members is 
large.

References:   Wei et al. 2005,   WMO TD No.1237, WWRP  THORPEX No. 6, 2005. p227-230. 
2006,   US Department of Commerce, NOAA/NCEP Office Note 453,  
33pp,  September 2006,  (also submitted to Tellus A, 2007).
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Orthogonal in 

the normalized 

observational 

space. 

High EDF in 

ensemble 

subspace.  

Dynamically 

fastest growing 

in future. 

 

Consistency 

between EFS and 

DA system 

Very good, 

however, 

quality of DA 

has not been 

proven better 

than  4D-Var in 

operational 

environment so 

far. 

Very good, 

DA provides 

good analysis 

for EFS which 

provides 

accurate 

forecast error 

covariance for 

DA. 

Possibly 

consistent  

(not used 

operationally 

by any known 

NWP centres).   

 



SOURCES OF FORECAST ERRORS 
IMPERFECT KNOWLEDGE / REPRESENTATION OF  

GOVERNING LAWS

USE OF IMPERFECT MODELS LEADS TO:
• Closure/truncation errors related to: 

• Spatial resolution
• Time step
• Type of physical processes explicitly resolved
• Parameterization scheme chosen

•Structure of scheme
•Choice of parameters

•Geographical domain resolved
•Boundary condition related uncertainty (Coupling)

NOTES:
• Two main (initial cond. vs. model) sources of forecast errors hard to separate =>
• Very little information is available on model related errors 
• Tendency in past to attribute all forecast errors to model problems 
Houtekamer, Buizza, Smith, Orrell, Vannitsem, Hansen, etc



WHAT HAPPENS IF MODEL ERRORS ARE IGNORED? 

NCEP ENSEMBLE RESULTS:
Bias in first moment Bias in second moment

All members shifted statistically Perturbation growth lags error growth

Y. Zhu



The impact of using a second model at MSC

The warm bias was reduced substantially and 
the U-shape disappeared by combining 
the two ensembles into the 16-SEF/GEM 
ensemble.

8-SEF 8-GEM

16-SEF/GEM

P. Houtekamer



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS - 1
CURRENT METHODS

1) Change structure of model (use different convective schemes, etc, MSC)
• Perturbation growth not affected?
• Biases of different model versions cancel out in ensemble mean?

Spread

Oper: 3 model versions
Para: More model diversity

Based on Houtekamer
J. Du



Spread

Oper: 3 model versions (ETA, ETA/KF, RSM)
Para: More model diversity

RMS error



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 2
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

• Modest increase in perturbation growth for tropics
• Some improvement in ROC skill for precip, for tropics

850 hPa Temp, NH

Spread ROC Area

Summer

Winter

Oper vs. Stochastic perturbationsBuizza



850 hPa Temp

Spread ROC Area

Oper vs. Stochastic perturbations

NH

Tropics

Summer

Winter

Buizza



Precipitation Forecast Scores Day 3
SAS, RAS, & Combination

RESULTS FROM COMBINED USE OF RAS & SAS

500 hPa height RMS error, NH extratr.
SAS, RAS, & Combination

NO POSITIVE EFFECT ON PRECIP OR HEIGHT SCORES
D. Hou



RESULTS FROM COMBINED USE OF RAS & SAS

Rank histogram comparing distributions 
of sub-ensembles relative to each other
AFTER BIAS CORRECTION, SAS & 

RAS SUB-ENSEMBLES COVER SAME 
SUBSPACE

500 hPa height NH extratrop. RMS error for 
RAS, SAS, and NAS (no convection)

NO DIFFERENCE WHETHER 
CONVECTIVE SCHEME IS USED OR NOT

CONVECTIVE SCHEME DOES NOT SEEM TO HAVE PROFOUND INFLUENCE 
ON FORECASTS EXCEPT PRECIP

D. Hou



REPRESENTING MODEL RELATED UNCERTAINTYREPRESENTING MODEL RELATED UNCERTAINTY
A STOCHASTIC PERTURBATION (SP) SCHEMEA STOCHASTIC PERTURBATION (SP) SCHEME

General Approach: Adding a stochastic forcing term 
in to the tendencies of the model equations.
Strategy: Generate the S terms from (random) linear 
combinations of the conventional perturbation 
tendencies.

Desired Properties 
1.    Forcing applied to all variables
2.   Approximately balanced 
3.   Smooth variation in space and time
4.    Flow dependent
5.    Quasi-orthogonal

Example of Combination Coefficients

Reduced Outlier

Reduced Bias

Reduced Absolute Systematic error

RMSE

Increased Spread

---- Without SP
---- With SP
---- Without SP

but optimal pp
(upper limit)

Stochastic Parameterization (SP)



AREA OF ACTIVE RESEARCH
ECMWF operational (Buizza et al, 1999), A random  numbe (sampled from a 
uniform distribution) multiplied to the parameterized tendency
ECMWF research (Shutts and Palmer, 2004), Cellular Automaton Stochastic 
Backscatterused to determine the perterbation
Simple Model Experiment (Peres-Munuzuri, 2003), multiplicative and additive 
stochastic forcing

NCEP METHOD UNDER TESTING
● Addition of flow-dependent perturbations to tendencies in course of integration

DETAILS – Add to each perturbed member:
Difference between single high & low-res forecasts (after scaling and filtering)
Perturbation based on the differences among the ensemble members at previous 

step in integration
• Use global or localized perturbation approach
• Random or guided selection of members (e.g., use difference between 

most similar members)

STOCHASTIC PERTURBATIONS



REPRESENTING MODEL RELATED UNCERTAINTYREPRESENTING MODEL RELATED UNCERTAINTY
A STOCHASTIC PERTURBATION SCHEMEA STOCHASTIC PERTURBATION SCHEME

Strategy: Generate the S terms from 
(random) linear combinations of the 
conventional perturbation tendencies.

General Approach: Adding a stochastic 
forcing term in to the tendencies of the 
model equations.
Assumption: The perturbations (difference 
between ensemble members and the 
control) in the conventional tendencies 
provide a sample of realizations of the 
additional stochastic forcing S. 

Desired Properties 
1.    Forcing applied to all variables
2.   Approximately balanced 
3.   Smooth variation in space and time
4.    Flow dependent
5.    Quasi-orthogonal
Expected Results
Increased spread
Reduced systematic error
Improved probabilistic forecast

Reduced Outlier

Example of Combination Coefficients



Outliers: H500, day 6 forecast, 20041002Outliers: H500, day 6 forecast, 20041002
Without SP

large number of outliers with 
negative and positive forecast bias

With SP
the number of outliers is

significantly reduced



Statistics: Ensemble Spread and Error of Ensemble MeanStatistics: Ensemble Spread and Error of Ensemble Mean
Increased Spread, Reduced Mean Error (ME)Increased Spread, Reduced Mean Error (ME)

Reduced Mean Absolute Systematic Error (MASE)Reduced Mean Absolute Systematic Error (MASE)
---------- Without SP      Without SP      -------------- With SPWith SP

h

t
afMASE −=MASE

Mean ErrorMean Error

Solid, rmse
Dash: spread

Solid: rmse
Dash: spread



Comparison with PostComparison with Post--Processing (PP) Processing (PP) 
RPSS: RPSS: Improved in both cases (SP and PP)Improved in both cases (SP and PP)

SP is more effective in week 2 forecastSP is more effective in week 2 forecast

---- Without SP
---- With SP
---- Without SP

but optimal pp
(upper limit)

---- Operation
---- Operation +1%PP
---- Operation +

optimal pp
(upper limit)

Stochastic Parameterization (SP) Bias-correction (1%PP)



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS DUE TO USE OF

IMPERFECT MODELS – 3
CURRENT METHODS

1) Change structure of model (eg, use different convective schemes, etc, MSC)
Model version fixed, whereas model error varies in time
Random/stochastic errors not addressed
Difficult to maintain

2) Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
Small scales perturbed
If otherwise same model used, larger scale biases may not be addressed

Do they work? Advantages of various approaches need to be carefully assessed
• Are flow dependent variations in uncertainty captured?
• Can statistical post-processing replicate use of various methods?

NEED NEW
• MORE COMPREHENSIVE AND
• THEORETICALLY APPEALING 

APPROACH



NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

GOAL
MEASURE
VARIANCE
NWP MODEL

OLD
1st Moment
RMS error
Ignored / reduced
Search for best configuration

NEW
Probability distribution
Probabilistic scores
Emphasized
Represent uncertainty

MODEL ERRORS ARE DUE TO:
• Truncation in spatial/temporal resolution –

• Need to represent stochastic effect of unresolved scales
• Add parameterized random noise

• Truncation in physical processes resolved
• Need to represent uncertainty due to choice of parameterization schemes

• Vary parameterization schemes / parameter values

MODEL ERRORS ARE PART OF LIFE, WILL NEVER GO AWAY
IN ENSEMBLE ERA, 

NWP MODELING PARADIGM NEEDS TO CHANGE



NEW APPROACH TO NWP MODELING –
REPRESENTING MODEL RELATED UNCERTAINTY

IT IS NOT ENOUGH TO PROVIDE SINGLE (BEST) MODEL
FORECAST 

JOINT EFFORT NEEDED BETWEEN MODELING & ENSEMBLE COMMUNITY

FOR OPTIMAL ENSEMBLE PERFORMANCE,
MODELS NEED TO REALISTICALLY REPRESENT ALL MODEL-RELATED 

Resolution (time and space truncation)
Parameterization-type (unresolved physics)

UNCERTAINTY AT THEIR SOURCE -
Like in case of initial condition-related uncertainty

FOR MODEL IMPROVEMENTS,
ENSEMBLE OFFERS TOOL TO SEPARATE INITIAL & MODEL ERRORS

Case dependent errors can be captured and corrected



WILL NEW APPROACH ADD VALUE?
WILL IT ENHANCE RESOLUTION OF PROBABILISTIC FCSTS?

WILL IT GIVE CASE-DEPENDENT ESTIMATES 
(INSTEAD OF AVERAGE STATISTICAL MEASURE) OF

MODEL-RELATED UNCERTAINTY?
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OUTLINE / SUMMARY
• TRADITIONAL NWP APPROACH

– REDUCE FORECAST UNCERTAINTY
– IGNORE REMAINING ERRORS

• Problem for users

• SOURCES OF FORECAST ERRORS
– INITIAL CONDITION
– NUMERICAL MODEL

• ESTIMATING AND SAMPLING FORECAST ERRORS
– INITIAL CONDITION

• Breeding technique / ET
– MODEL ERRORS

• No solid scientific basis, open research

• POTENTIAL VALUE OF ENSEMBLE APPROACH
– IMPROVED SINGLE VALUE ESTIMATE
– CASE DEPENDENT ESTIMATE OF UNCERTAINTY
– FULL PROBABILITY DISTRIBUTION / TRAJECTORIES
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BACKGROUND
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ENSEMBLES: WHEN?
• Single forecast approach favored when 

– Case-dependent variations are weak in
• Level of linear error growth at short lead times
• Pdf evolution at short lead times (ie, quasi-linear behaviour) 
• Model-related error behaviour (at any lead time)

– Aggregate bias-correction algorithms adequate

• Use ensembles otherwise
– Review criteria above for each application
– Bias-correct both single value & ensemble forecasts (ie, pdf)

• Decide on forecast configuration based on results

• “Generic” configuration
– Higher resolution control for short lead time if beneficial
– Lower resolution ensemble out to longer lead times

• Benefits from combining hi-re control & lo-res ensemble at shorter leads?

• Considerations
– Integrations must resolve phenomena of interest

• Unless sophisticated statistical down-scaling techniques can be developed



OLD PARADIGM: 
Reduce Uncertainty FORECAST PROCESS 

NEW PARADIGM: 
Reduce & Assess 

Uncertainty 
Misconstrued 
determinism  NATURE Critical sensitivity to 

initial conditions - Chaos 
Reduce obs. uncertainty OBSERVING SYSTEM Quantify obs. uncertainty

Estimate expected value DATA ASSIMILATION Estimate distribution 

Reduce model errors NWP MODELING Reduce & represent 
model errors 

Ad hoc opportunities ENSEMBLE 
FORECASTING Systematic approach 

Reduce systematic error STATISTICAL POST-
PROCESSING Calibrate uncertainty 

Single value BASIC PRODUCTS Distributional 
characteristics 

Yes or No forecasts 
tailored for decisions 

USER SUPPORT 
SYSTEMS 

Incorporate forecast 
uncertainty info 

Limited forecast info - 
Restricted usage SOCIETY All forecast info – 

Optimal user decisions  

z
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Ensemble Forecasting:
Central role – bringing the pieces together

PROPAGATING FORECAST UNCERTAINTY



OPERATIONSOPERATIONS

RESEARCH TO RESEARCH TO 
OPERATIONSOPERATIONS

OPERATIONS TO OPERATIONS TO 
APPLICATIONSAPPLICATIONS

USER USER 
SUPPORTSUPPORT

DIRECTED DIRECTED 
R&DR&D

RESEARCH & RESEARCH & 
DEVELOPMENTDEVELOPMENT

SOCIETAL SOCIETAL 
APPLICATIONSAPPLICATIONS

General basic & applied R&D

R&D directed toward operations

Systematic transition to operations

7/24 Product generation

Systematic transition to applications

Delivery of products to end users

Decision making, feedback

RESEARCH TO OPERATIONS TO APPLICATIONS FUNNEL

WHO WHAT

Wide research community

Research Labs,            Grants

Environmental Modeling Center

NCEP Central Operations

NCEP Service Centers

WFOs,        Weather Enterprise

Diverse user community



SOCIOECON.

ENSEMBLES AND THE RESEARCH COMMUNITY
LINKED THROUGH THORPEX – MAJOR INTERNATIONAL RESEARCH PROGRAM

GOAL: Accelerate improvements of high impact weather forecasts
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C
LI

M
A

TE
 F

O
R

E
C

A
S

TI
N

G
 / 

C
TB

ADAPTIVE COLLECTION & 
USE OF OBSERVATIONS

INTEGRATED
DATA 

ASSIMILATION & 
FORECASTING

USER CONTROLLABLE 
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• NWS requirements must be redefined
– NWS operations is strictly requirement driven

• Culture must change to support evolution in operations

• New emphasis on high impact events
– W&W Goal & EMP Sub-Goal involvement 

• High Impact Events Theme
– Adaptive and event driven
– Integrated across the spectrum of services
– Probabilistic approach
– Enhanced automated guidance
– New role for forecasters
– Environmental Information Repository

• “Establish comprehensive suite of ensemble forecast systems (“forecast 
engine”) that will facilitate the generation of automated forecast guidance 
products in the framework of the new NOAA CONOPS as the basis 
(“forecast engine”) for NOAA operations regarding high impact events:
– New automated “forecast engine that adapts to high impact events

• Adaptive observations
• Adaptive ensemble suite
• Statistical post-processing

ENSEMBLES AND NOAA SERVICES

An Integrated Plan of Operations
NOAA’s Weather and Water

High Impact Events
FY 2009 – 2013
August 3, 2006



• Performance
– Offline research, parallel development, pre-implementation testing

• User relevant verification statistics (ie, bias corrected & downscaled forecasts)

• Economy
– Operations is narrowest point in Research-Operations-Applications funnel

• Lots of research/development, one system in operations
• Computational efficiency

• Maintenance
– Minimize work needed for transfer (R2O, O2A, from machine to machine, etc)

• Unified approaches preferred if performance not sacrificed

• Interconnectedness
– Each piece of operations intimately connected with rest of system

• Incremental improvements to existing system OR
• Very careful long-term planning for major upgrades

CONSIDERATIONS FOR OPERATIONAL IMPLEMENTATIONS



COMPONENT Adaptive 
Observations 

Initial 
Perturbations 

Model 
Perturbations 

Statistical 
Post-Proc. 

Product 
Generation Verification 

FORECAST SYSTEM LINK Obs. System 
Design 

Data 
Assimilation 

Numerical 
Modeling    

APPLICATION PEOPLE Masutani, 
Song, Wei Hou, Du Cui, Pena Zhou, Zhu Zhu, Zhou, 

Hou 

Coupled Pena       

Global Zhu, Wobus       
Regional Du       

High-Impact        

Ocean wave Chen       

Sea Ice Grumbine       
Riverflow/ Land-

surface Hou       

ENSEMBLE DEVELOPMENT CONSIDERATIONS
• Common scientific principles - Chaos affects all spatial/temporal scales

– Quantify all forecast uncertainty - Inseparable from forecasting in general
– Links with observing system, data assimilation, numerical modeling, user applications

– Represent all forecast uncertainty at their source - Otherwise poor reliability
• Only chance to propagate true uncertainty through forecast process

• Unified approach
– Common techniques across applications wherever appropriate / possible

• Ensemble team members
– Work in implementation teams, coordinated with rest of EMC & NCO
– Interact with broader research and user communities


