
The TIDB2 Meteo Experience

João Simões – ECMWF, IM (Portugal)
Maria Monteiro - IM (Portugal)

António Amorim - FCUL (Portugal)

Experience with the TIDB2 database
interface in managing

meteorological observation and forecast
data

11th ECMWF Workshop
on Meteorological Operational Systems

ECMWF, November 2007

● Temporal based system:
– all data is stored with temporal information

(associated with timestamp);
– The history is kept for all objects (the objects are

always added, never deleted).
● Objects (like GRIB and BUFR) and database

connections (to Oracle, MySQL...) handled via runtime
plugins.

● Binary data stored with customized “auto-metadata”.
● Support for many interfaces on multiple platforms.
● Integrated with PAIPIX Linux distribution.

General TIDB2
characteristics

The (current)TIDB2
Meteo-Data Flow

TIDB2 SERVER

GTS

Post-processing
and

BUFR enconding

Obs Data
 (SYNOP, TEMP,

METAR...)

GRIB from
ECMWF and

Others

BUFR
 (SYNOP, TEMP,

METAR...)

ALADIN
PORT

MM5
CLUSTER

Temporary
Storage

GRIB

GRIB

TIDB2 Client

FTP

TIDB2
Clients

...

● The TIDB2 server is:
– an AMD64x2 machine with 4GB of RAM;
– running PAIPIX Linux;
– using MySQL (TIDB2 allows to mix or change the

RDBMS server at any time).
– 1.2 TB of disk and 1TB of online data.

● It is being upgraded to two servers with redundancy:
– Dual Quad-Core Xeon with 8GB of RAM;
– 7.5TB RAID disk array each.

The TIDB2 Server

● Before we started
to push data into
the database we
had to create
some table
infrastructure to
store it!

● KTIDBExplorer
provides a tool for
such operation
departing from
the BUFR/GRIB
metadata.

Preparing to Store Meteo-
Data

● The structure of the tables has changed a lot since they
have been created for the first time:
– We make use of the schema evolution feature of

TIDB2.
– We store all schema versions as templates.
– There is the need to recreate tables with a different

schema and we want all metadata to be regenerated.
– The tool provided for such task is “tidbrefactor”.

Why Templates are
Important...

● A Template is an empty table, similar to the one that will
contain data, but contains only the table structure.

Creating Templates

SYNOP1
Structure

TEMP
Structure

METAR
Structure

of Indexes

● TIDB2 provides the tool “tidbrefactor” to change
the schema of an existing table according to a
model.
Use:
 tidbrefactor <[url]/source_table> <[url]/model_table>
Example:
 tidbrefactor mysql://server:db:user:pass/table1

mysql://server2:db2:user:pass/table2
● This tool works in 3 steps:

– Modifiy the data table structure according to a
template.

– Reprocess all BLOBs stored with the metadata.
– Regenerate all metadata automatically.

The “Refactor” tool

● The “refactor” has been used as a maintenance task to:
– Add/Remove indexing/metadata columns.
– Change column names.
– Change data types.
– Change the table type.
– Regenerate corrupted metadata due to a BUFR/GRIB

decoding failure (ex.: missing tables, unsupported
BUFR/GRIB format...).

● A slightly modified version of “tidbrefactor”, the
“tidbtrans”, has been used to copy several GB of data
between different databases and servers and RDBMS.

Some real “Refactor” use
cases

● We faced the problem that data could be being inserted
multiple times with slightly modifications/corrections.

Introducing “TAGs” in TIDB2
#1

● TIDB2 has a feature to not allow storing multiple times the
very same data, but...

● It happens to have similar data stored multiple times on
the database:
– The data from the GTS is sent multiple times to the post

processor, reprocessed and sent to the database.
– There is a data correction and last data should be

replaced.
– The new data is more complete and should replace the

last one.
– Also makes easy to clean up the earlier versions of

objects in a maintenance task

Introducing “TAGs” in TIDB2
#2

● The just arrived objects are tagged
as “H0”

● If there was already a similar object
on the database it is tagged as “H1”,
the existing object is retagged as “0”
instead of “H0”.

● To get the last version of all objects
we just need to grab the “H*” objects.

How “TAGs” work?

0 0H0 0

H1 1 H1

H2

?

● An object is called “similar” if it shares the same indexing
information.

● Looking at METAR BUFRs on the TIDB2 Server.

Viewing BUFR data

● Previewing a 2m Temperature GRIB on the TIDB2 Server.

Viewing GRIB data

- Time
interval
is set to:
[TOR,
TOR+Ste
p]
- TOR is
the “time
of run”.

● C++ - is the native TIDB2 interface, fast, fully featured
and easy to use.

● C/Fortran – it was very useful to migrate the legacy
applications.

● Shell tools – very suitable for integration with other
general propouse systems, php web scripts, crontab
like jobs, shell scripts...

The TIDB2 Interfaces

● This is the example of a very old application migrated
from a VAX system, using the
fortran interface!

Example of a Migration
of a Legacy Application

● This application takes as
input a fortran namelist and
retrieves the correspondent
observation from database.

$OBSOP
 lblock=.f.,
 lident=.t.,
 ident=07149,
 idate=20071002,
 larea=.f.,
 carea='global',
 ctime='0200/TO/1200',
 lctime=.t.,
 cobstype='s',
 lshow_bufr=.t.
$END

● This client is a php web page, using the shell tools.

The TIDB2 GRIB-WebClient

● SIMDAT Virtual Global Information Centre provides a
shell scripting interface for data retrieval.

● We used TIDB2 Shell Tools interface for integration:
– Standard unix command line tools to convert the

request into time intervals and SQL query.
– tidbgetobject to get the bufr data from the database;
– tidbviewobject to view retrieved bufrs as HTML.

● It was a very simple task, took only a day to get the first
working dataset!

Integration with SIMDAT
VGISC #1

Integration with SIMDAT
VGISC #2

Data Tools

● tidbtableput – store non BLOB data in the database.
● putobject – store an object into a specified table in the

database.
● tidbgetobject - grab selected objects from specified

table(s) in the database, store them as a collection off
objects on a file at the local filesystem.

● tidbviewobject – use TIDB2 object plugins to view a
local file (like a GRIB or BUFR collection) either in txt or
HTML format.

The Flexible TIDB2 Shell
Tools #1

● tidbtabledump – dump the selected contents of
specified table(s) in the database.

● tidbdate2key – covert a regular time expression into a
TIDB2 key (used for indexing data).

Management Tools

● tidbrefactor – alter the schema of tables.
● tidbtrans – copy a table to another database or

server/RDBMS.
● tidbtabledrop – remove a table from the database.

The Flexible TIDB2 Shell
Tools #2

● A good documentation about TIDB2 history,installation
and API documentation could be obtain from:

http://www.sim.fc.ul.pt/sim_en/Tidb2
You are always welcome to contact the developers!

● The last version of TIDB2 can be downloaded from:
http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/tidb2.tar.gz?root=atlastdaq&view=tar

● Try the PAIPIX Linux distribution, with TIDB2 and a lot of
tools already configured and ready to run!

http://www.paipix.org

Getting help and
downloading TIDB2

http://www.sim.fc.ul.pt/sim_en/Tidb2
http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/tidb2.tar.gz?root=atlastdaq&view=tar
http://www.paipix.org/

● Thanks to...
– ECMWF
– IM, Portugal
– All of you!

The END

