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● Temporal based system:
– all data is stored with temporal information 

(associated with timestamp);
– The history is kept for all objects (the objects are 

always added, never deleted).
● Objects (like GRIB and BUFR) and database 

connections (to Oracle, MySQL...) handled via runtime 
plugins.

● Binary data stored with customized “auto-metadata”.
● Support for many interfaces on multiple platforms.
● Integrated with PAIPIX Linux distribution.

General TIDB2 
characteristics
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● The TIDB2 server is:
– an AMD64x2 machine with 4GB of RAM;
– running PAIPIX Linux;
– using MySQL (TIDB2 allows to mix or change the 

RDBMS server at any time).
– 1.2 TB of disk and 1TB of online data.

● It is being upgraded to two servers with redundancy:
– Dual Quad-Core Xeon with 8GB of RAM;
– 7.5TB RAID disk array each.

The TIDB2 Server



● Before we started 
to push data into 
the database we 
had to create 
some table 
infrastructure to 
store it!

● KTIDBExplorer 
provides a tool for 
such operation 
departing from 
the BUFR/GRIB 
metadata.

Preparing to Store Meteo-
Data



● The structure of the tables has changed a lot since they 
have been created for the first time:
– We make use of the schema evolution feature of 

TIDB2.
– We store all schema versions as templates.
– There is the need to recreate tables with a different 

schema and we want all metadata to be regenerated.
– The tool provided for such task is “tidbrefactor”.

Why Templates are 
Important...



● A Template is an empty table, similar to the one that will 
contain data, but contains only the table structure.

Creating Templates
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● TIDB2 provides the tool “tidbrefactor” to change 
the schema of an existing table according to a 
model.
Use:
   tidbrefactor <[url]/source_table> <[url]/model_table>
Example:
   tidbrefactor mysql://server:db:user:pass/table1

mysql://server2:db2:user:pass/table2
● This tool works in 3 steps:

– Modifiy the data table structure according to a 
template.

– Reprocess all BLOBs stored with the metadata.
– Regenerate all metadata automatically.

The “Refactor” tool



● The “refactor” has been used as a maintenance task to:
– Add/Remove indexing/metadata columns.
– Change column names.
– Change data types.
– Change the table type.
– Regenerate corrupted metadata due to a BUFR/GRIB 

decoding failure (ex.: missing tables, unsupported 
BUFR/GRIB format...).

● A slightly modified version of “tidbrefactor”, the 
“tidbtrans”, has been used to copy several GB of data 
between different databases and servers and RDBMS.

Some real “Refactor” use 
cases



● We faced the problem that data could be being inserted 
multiple times with slightly modifications/corrections.

Introducing “TAGs” in TIDB2 
#1



● TIDB2 has a feature to not allow storing multiple times the 
very same data, but...

● It happens to have similar data stored multiple times on 
the database:
– The data from the GTS is sent multiple times to the post 

processor, reprocessed and sent to the database.
– There is a data correction and last data should be 

replaced.
– The new data is more complete and should replace the 

last one.
– Also makes easy to clean up the earlier versions of 

objects in a maintenance task

Introducing “TAGs” in TIDB2 
#2



● The just arrived objects are tagged 
as “H0”

● If there was already a similar object 
on the database it is tagged as “H1”, 
the existing object is retagged as “0” 
instead of “H0”.

● To get the last version of all objects 
we just need to grab the “H*” objects.

How “TAGs” work?

0 0H0 0

H1 1 H1

H2

?

● An object is called “similar” if it shares the same indexing 
information.



● Looking at METAR BUFRs on the TIDB2 Server.

Viewing BUFR data



● Previewing a 2m Temperature GRIB on the TIDB2 Server.

Viewing GRIB data

- Time 
interval 
is set to: 
[TOR, 
TOR+Ste
p]
- TOR is 
the “time 
of run”.



● C++ - is the native TIDB2 interface, fast, fully featured 
and easy to use.

● C/Fortran – it was very useful to migrate the legacy 
applications.

● Shell tools – very suitable for integration with other 
general propouse systems, php web scripts, crontab 
like jobs, shell scripts...

The TIDB2 Interfaces



● This is the example of a very old application migrated 
from a VAX system, using the
fortran interface!

Example of a Migration
of a Legacy Application

● This application takes as 
input a fortran namelist and 
retrieves the correspondent 
observation from database.

$OBSOP
         lblock=.f.,
         lident=.t.,
         ident=07149,
         idate=20071002,
         larea=.f.,
         carea='global',
         ctime='0200/TO/1200',
         lctime=.t.,
         cobstype='s',
         lshow_bufr=.t.
$END



● This client is a php web page, using the shell tools.

The TIDB2 GRIB-WebClient



● SIMDAT Virtual Global Information Centre provides a 
shell scripting interface for data retrieval.

● We used TIDB2 Shell Tools interface for integration:
– Standard unix command line tools to convert the 

request into time intervals and SQL query.
– tidbgetobject to get the bufr data from the database;
– tidbviewobject to view retrieved bufrs as HTML.

● It was a very simple task, took only a day to get the first 
working dataset!

Integration with SIMDAT 
VGISC #1



Integration with SIMDAT 
VGISC #2



Data Tools

● tidbtableput – store non BLOB data in the database.
● putobject  – store an object into a specified table in the 

database.
● tidbgetobject  - grab selected objects from specified 

table(s) in the database, store them as a collection off 
objects on a file at the local filesystem.

● tidbviewobject –  use TIDB2 object plugins to view a 
local file (like a GRIB or BUFR collection) either in txt or 
HTML format.

The Flexible TIDB2 Shell 
Tools #1



● tidbtabledump – dump the selected contents of 
specified table(s) in the database.

● tidbdate2key – covert a regular time expression into a 
TIDB2 key (used for indexing data).

Management Tools

● tidbrefactor – alter the schema of tables.
● tidbtrans  – copy a table to another database or 

server/RDBMS.
● tidbtabledrop – remove a table from the database.

The Flexible TIDB2 Shell 
Tools #2



● A good documentation about TIDB2 history,installation 
and API documentation could be obtain from:

http://www.sim.fc.ul.pt/sim_en/Tidb2
You are always welcome to contact the developers!

● The last version of TIDB2 can be downloaded from:
http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/tidb2.tar.gz?root=atlastdaq&view=tar

● Try the PAIPIX Linux distribution, with TIDB2 and a lot of 
tools already configured and ready to run!

http://www.paipix.org

Getting help and
downloading TIDB2

http://www.sim.fc.ul.pt/sim_en/Tidb2
http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/tidb2.tar.gz?root=atlastdaq&view=tar
http://www.paipix.org/
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