Verifying deterministic forecasts of extreme events

Chris Ferro

Walker Institute
Department of Meteorology
University of Reading

- Probability model
- Interpretation and estimation
- Application to precipitation forecasts

Direct approach

Observed Not Obs.

Forecasted	a	b	$a+b$
Not Forecasted	c	d	$c+d$
	$a+c$	$b+d$	n

Hit rate $=\frac{a}{a+c}$

Forecast if $X>u$
Observe if $Y>v$

Probability approach

Observed Not Obs.

Forecasted	$\operatorname{Pr}(X>u, Y>v)$	$*$	$\operatorname{Pr}(X>u)$
Not Forecasted	$*$	$*$	$*$
	$\operatorname{Pr}(Y>v)$	$*$	1

Hit rate $=\operatorname{Pr}(X>u \mid Y>v)$

Forecast if $X>u$
Observe if $Y>v$

Probability model

Imagine choosing u so that

$$
\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p \quad \text { (base rate) }
$$

Extreme-value theory implies

$$
\operatorname{Pr}(X>u, Y>v)=\kappa p^{1 / \eta} \quad \text { for small } p
$$

under weak conditions.

Interpretation

Observed Not Observed

Forecasted	$\kappa p^{1 / \eta}$	$*$	p
Not Forecasted	$*$	$1-2 p+\kappa p^{1 / \eta}$	$*$
	p	$*$	1

Hit rate $=\kappa p^{1 / \eta-1}$

$$
\mathrm{EDS}=2 \eta-1
$$

$\kappa_{2} \kappa_{1}$	Superior for $p>p^{*}$	Superior for all p

Daily precipitation: mid-Wales, 1 Jan 05 - 11 Nov 06

Thanks to Marion Mittermaier

- Maximum-likelihood estimates of η and κ based on ranks
- Threshold choice and model assumptions

Parameter estimates

Verification measures

- Direct estimates degenerate for rare events
- Model estimates change smoothly and are more precise

Conclusion

- Deterministic forecasts of rare, extreme events
- Only two parameters are needed to describe how the quality of calibrated forecasts changes with base rate
- The model gives more precise estimates of forecast quality

Paper and R code available at

> www.met.rdg.ac.uk/~sws02caf
c.a.t.ferro@reading.ac.uk

Appendix

Simulation study

Model theory

Limiting behaviour of verification measures

Simulation study

- Bivariate Normal data: correlation 0.8
- Direct and model estimates of hit rate

Model theory - 1

Imagine choosing u so that

$$
\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p \quad \text { (base rate). }
$$

Define $\quad \tilde{X}=-\log [1-F(X)]$ where $F(x)=\operatorname{Pr}(X \leq x)$

$$
\tilde{Y}=-\log [1-G(Y)] \quad G(y)=\operatorname{Pr}(Y \leq y)
$$

Then \tilde{X} and \tilde{Y} are Exponential with unit means and

$$
\begin{aligned}
\operatorname{Pr}(X>u, Y>v) & =\operatorname{Pr}(\tilde{X}>-\log p, \tilde{Y}>-\log p) \\
& =\operatorname{Pr}(Z>-\log p)
\end{aligned}
$$

where $Z=\min \{\tilde{X}, \tilde{Y}\}$.

Model theory - 2

For \tilde{X} and \tilde{Y} Exponential with unit means and $Z=\min \{\tilde{X}, \tilde{Y}\}$,

$$
\operatorname{Pr}(Z>z)= \begin{cases}\exp (-z) & \text { if } \tilde{X} \equiv \tilde{Y} \\ \exp (-2 z) & \text { if } \tilde{X} \Perp \tilde{Y}\end{cases}
$$

Assume

$$
\operatorname{Pr}(Z>z) \sim \mathcal{L}\left(e^{z}\right) \exp (-z / \eta) \quad \text { as } z \rightarrow \infty,
$$

where $0<\eta \leq 1$ and $\mathcal{L}(r t) / \mathcal{L}(r) \rightarrow 1$ as $r \rightarrow \infty$ for all $t>0$.
e.g. $(X, Y) \sim \operatorname{Normal}$ has $\eta=[1+\operatorname{cor}(X, Y)] / 2$.

Ledford \& Tawn (1996, Biometrika)

Model theory - 3

$\operatorname{Pr}(Z>z) \sim \mathcal{L}\left(e^{z}\right) \exp (-z / \eta)$ where $\mathcal{L}(r t) / \mathcal{L}(r) \rightarrow 1$ as $r \rightarrow \infty$.

For a high threshold w_{0},

$$
\begin{aligned}
\operatorname{Pr}\left(Z>w_{0}+z\right) & \approx \mathcal{L}\left(e^{w_{0}+z}\right) \exp \left[-\left(w_{0}+z\right) / \eta\right] \\
& \approx \mathcal{L}\left(e^{w_{0}}\right) \exp \left[-\left(w_{0}+z\right) / \eta\right]
\end{aligned}
$$

so model

$$
\operatorname{Pr}(Z>z)=\kappa \exp (-z / \eta) \quad \text { for all } z>w_{0}
$$

i.e.

$$
\operatorname{Pr}(Z>-\log p)=\kappa p^{1 / \eta} \quad \text { for all } p<\exp \left(-w_{0}\right)
$$

Limiting behaviour of measures

Hit rate $=\frac{a}{a+c} \sim \kappa p^{1 / \eta-1} \rightarrow \begin{cases}0 & \text { if } \eta<1 \\ \kappa & \text { if } \eta=1\end{cases}$

$$
\mathrm{PC}=\frac{a+d}{n}, \quad \mathrm{PSS}=\frac{a d-b c}{(a+c)(b+d)}, \quad \mathrm{OR}=\frac{a d}{b c}
$$

$\eta<\frac{1}{2}$		$\eta=\frac{1}{2}$	$\eta>\frac{1}{2}$	$\eta=1$
PC	$1-2 p \uparrow 1$	$1-2 p \uparrow 1$	$1-2 p \uparrow 1$	$1-2 \bar{\kappa} p \uparrow 1$
PSS	$-p \uparrow 0$	$-\bar{\kappa} p \uparrow 0$	$\kappa p^{\delta-1}$	$\downarrow 0$
OR	$\kappa p^{\delta-2} \downarrow 0$	$\kappa-2 \kappa \bar{\kappa} p \downarrow \kappa$	$\kappa p^{\delta-2} \uparrow \infty$	$\kappa /\left(\bar{\kappa}^{2} p\right) \uparrow \infty$

where $\delta=1 / \eta$ and $\bar{\kappa}=1-\kappa$

Contradictory skill scores?

ERA-40 daily rainfall forecasts: $\eta=0.81, \kappa=1.16$

