Verifying deterministic forecasts of extreme events

Chris Ferro

Walker Institute Department of Meteorology University of Reading

- Probability model
- Interpretation and estimation
- Application to precipitation forecasts

Direct approach

	Observed	Not Obs.	
Forecasted	а	b	a+b
Not Forecasted	С	d	c+d
	a+c	b+d	n
Hit rate $=$ $\frac{a}{a+c}$	ation Y		· .
Forecast if $X > u$	serv		
Observe if $Y > v$	Ô	u	
		Forecast 2	Х

Probability approach

	Observed	Not Obs.	
Forecasted	Pr(X > u, Y > v)	*	$\Pr(X > u)$
Not Forecasted	*	*	*
	$\Pr(Y > v)$	*	1
Hit rate = $Pr(X > u)$ Forecast if $X > u$ Observe if $Y > v$	Observation \prec $(A < A A$		· · · · · · · · · · · · · · · · · · ·

Forecast X

Probability model

Imagine choosing *u* so that

$$Pr(X > u) = Pr(Y > v) =: p$$
 (base rate)

Extreme-value theory implies

$$Pr(X > u, Y > v) = \kappa p^{1/\eta}$$
 for small p

under weak conditions.

Ledford & Tawn (1996, Biometrika)

Interpretation

				Observed	Not Observe	d	
	Forecasted Not Forecasted		$\kappa p^{1/\eta}$	*	р		
			*	$1 - 2p + \kappa p^{1/2}$	$^{\prime }\eta$ $_{st}$		
				р	*	1	
Hit	rate EDS	=	$\kappa p^{1/\eta-1}$ 2 $\eta-1$	κ ₁ – κ ₂	Superior for p > p* Inferior for all p	Superior for all p Superior for p < p*	
				0 -			
					י ט n ₂	11 1	
					'12		

Daily precipitation: mid-Wales, 1 Jan 05 – 11 Nov 06

Thanks to Marion Mittermaier

- Maximum-likelihood estimates of η and κ based on ranks
- Threshold choice and model assumptions

Parameter estimates

•

Verification measures

- Direct estimates degenerate for rare events
- Model estimates change smoothly and are more precise

Conclusion

Deterministic forecasts of rare, extreme events

- Only two parameters are needed to describe how the quality of calibrated forecasts changes with base rate
- The model gives more precise estimates of forecast quality

Paper and R code available at

www.met.rdg.ac.uk/~sws02caf

c.a.t.ferro@reading.ac.uk

Appendix

Simulation study

Model theory

Limiting behaviour of verification measures

Simulation study

- Bivariate Normal data: correlation 0.8
- Direct and model estimates of hit rate

Model theory – 1

Imagine choosing u so that

$$\begin{array}{ll} \Pr(X > u) = \Pr(Y > v) =: p & (\text{base rate}). \end{array}$$

$$\begin{array}{ll} \text{Define} & \tilde{X} = -\log[1 - F(X)] & \text{where} & F(x) = \Pr(X \le x) \\ \tilde{Y} = -\log[1 - G(Y)] & G(y) = \Pr(Y \le y) \end{array}$$

Then \tilde{X} and \tilde{Y} are Exponential with unit means and

$$\begin{aligned} \mathsf{Pr}(X > u, Y > v) &= \mathsf{Pr}(\tilde{X} > -\log p, \tilde{Y} > -\log p) \\ &= \mathsf{Pr}(Z > -\log p) \end{aligned}$$

where $Z = \min{\{\tilde{X}, \tilde{Y}\}}$.

Model theory – 2

For \tilde{X} and \tilde{Y} Exponential with unit means and $Z = \min{\{\tilde{X}, \tilde{Y}\}}$,

$$\mathsf{Pr}(Z > z) = \left\{egin{array}{cc} \exp(-z) & ext{if } ilde{X} \equiv ilde{Y} \ \exp(-2z) & ext{if } ilde{X} \perp ilde{Y} \end{array}
ight.$$

Assume

$$\Pr(Z > z) \sim \mathcal{L}(e^{Z}) \exp(-z/\eta)$$
 as $z \to \infty$,
where $0 < \eta \le 1$ and $\mathcal{L}(rt)/\mathcal{L}(r) \to 1$ as $r \to \infty$ for all $t > 0$.

e.g. $(X, Y) \sim \text{Normal has } \eta = [1 + \text{cor}(X, Y)]/2.$

Ledford & Tawn (1996, Biometrika)

Model theory – 3

 $\Pr(Z > z) \sim \mathcal{L}(e^z) \exp(-z/\eta)$ where $\mathcal{L}(rt)/\mathcal{L}(r) \to 1$ as $r \to \infty$.

For a high threshold w_0 ,

$$\begin{array}{rcl} \Pr(Z > w_0 + z) &\approx & \mathcal{L}(e^{w_0 + z}) \exp[-(w_0 + z)/\eta] \\ &\approx & \mathcal{L}(e^{w_0}) \exp[-(w_0 + z)/\eta] \end{array}$$

so model

$$\Pr(Z > z) = \kappa \exp(-z/\eta)$$
 for all $z > w_0$

i.e.

 $\Pr(Z > -\log p) = \kappa p^{1/\eta}$ for all $p < \exp(-w_0)$.

Limiting behaviour of measures

$$\begin{aligned} \text{Hit rate} &= \frac{a}{a+c} \sim \kappa p^{1/\eta-1} \rightarrow \begin{cases} 0 & \text{if } \eta < 1\\ \kappa & \text{if } \eta = 1 \end{cases} \\ \text{PC} &= \frac{a+d}{n}, \qquad \text{PSS} = \frac{ad-bc}{(a+c)(b+d)}, \qquad \text{OR} = \frac{ad}{bc} \\ \frac{\eta < \frac{1}{2}}{PC} & \frac{\eta = \frac{1}{2}}{1-2p\uparrow 1} & \frac{\eta > \frac{1}{2}}{1-2p\uparrow 1} & \frac{\eta = 1}{1-2\bar{\kappa}p\uparrow 1} \\ \frac{1-2p\uparrow 1}{PSS} & -p\uparrow 0 & -\bar{\kappa}p \updownarrow 0 & \kappa p^{\delta-1} \downarrow 0 & \kappa -\bar{\kappa}p\uparrow \kappa \\ \text{OR} & \kappa p^{\delta-2} \downarrow 0 & \kappa - 2\kappa\bar{\kappa}p \updownarrow \kappa & \kappa p^{\delta-2} \uparrow \infty & \kappa/(\bar{\kappa}^2p) \uparrow \infty \end{aligned}$$

where $\delta={\rm 1}/\eta$ and $\bar\kappa={\rm 1}-\kappa$

Contradictory skill scores? ERA-40 daily rainfall forecasts: $\eta = 0.81$, $\kappa = 1.16$

