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ABSTRACT

NMC derived forecast error covariances are modelled by explicit sparse matrices in wavelet transformed representation.
The number of nonzero coefficients in the sparse matrix representation is of order 10 times the number of grid-points (to
be compared with the number of grid-points squared for a full representation) in 1 dimension and 30 to 50 in 2 dimensions
for an accuracy of 1%. We expect that of order 100 coefficients times the number of grid-points will be required in 3-d.
This makes this wavelet transform method competitive with other approaches as for instance the spectral transform.

The basic idea of the wavelet transform and its use for sparse matrix representation is described for univariate and mul-
tivariate covariances. Technical issues as the extraction of the symmetric square root and zonal averaging in higher
dimensions as well as statistical aspects of sample covariance matrices are discussed. First results using a 2-dimensional
implementation of the approach in the DWD 3DVAR are presented.

The method presented relies on NMC or analysis ensemble statistics using a large number of forecast differences or
ensemble members in order to estimate the matrix coefficients. The prospects of the wavelet approach for flow dependent
covariance modelling are discussed.

1 The Method

Figure1a shows a wavelet transformed NMC derived covariance matrix for geopotential height in one dimen-
sion. It can be seen that only a small fraction of the coefficients are considerably different from zero. Thus, if
small coefficients are neglected, covariances may be modelled by extremely sparse matrices in this representa-
tion.

The large coefficients show a distinctive pattern, reflecting the block decomposition of the wavelet transformed
matrices. Substantial nonzero coefficients are located in narrow bands along the diagonal and along the off-
diagonal ‘branches’ indicated by the gray lines in Figure1b. The coefficients at these positions correspond to
correlations between basis functions of the same or of different scales but at approximately the same location.
Other correlation coefficients are almost zero and can be neglected in a truncated expansion.

The method to implement matrix operators in sparse wavelet-transformed representation has been proposed by
Beylkin et al. (1991) and was applied to geostatistics byNychka et al. (2002). Forecast error covariances in
wavelet transformed diagonal representation are used byFisher and Andersson(2001) andDeckmyn and Berre
(2005). In contrast to the latter the method proposed here uses off-diagonal coefficients as well.
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Figure 1: a) Wavelet transformed zonally averaged covariance matrix (NMC method, 480×480 coefficients)
for geopotential height at 500 hPa, 60◦N.
b) Block decomposition of covariance matrices in wavelet representation. Each diagonal block holds coeffi-
cients related to the covariances between scaling functions (j0) or wavelet functions (yi) at the same scale.
Each off-diagonal block holds coefficients related to covariances between scaling functions and wavelets or
between wavelets of different scale.

1.1 Wavelet transformation of covariance matrices

A fast hierarchical algorithm can be implemented for the Discrete Wavelet Transform (DWT). The procedure
starts at the finest resolution (top leveln in Figure2a with n=4) there the coefficientsln,k are identified with
the coefficients of the gridded function to be transformed. In the first step of the hierarchical transform a
low pass filter is used to obtain coefficientsln−1,l of the scaling function expansion on the next coarser scale,
keeping only half the number of coefficients. The complementary information is derived by application of
a high pass filter yielding coefficientsgn−1,l of the wavelet function expansion. The procedure is repeated
on the scaling function coefficientsl j,l , leaving the wavelet coefficientsg j,l unchanged. It terminates when
only one coefficientl0,1 is left or the number of coefficients cannot be divided by 2 any more. If the filter
functions have compact support the number of operations required for this Discrete Wavelet Transformation
scales linearly with the number of grid-pointsN. Thus it is faster than the Fast Fourier Transform which scales
with O(N× logN).

The analysis transform described above derives the wavelet expansion coefficients of a gridded function. In
the remainder of this paper it is denoted as the inverse wavelet transformW−1. The synthesisW, which
reconstructs the function from the coefficients of the wavelet expansion, is a hierarchical transform as well.
The basic algorithms of variational data assimilation use the synthesisW and its adjointWT . The analysis
W−1 is merely required for calculating the coefficients of the covariance matrices in wavelet representation.

The basis functions of the wavelet transform (scaling functionsj related to coefficientsl and waveletsy
related to coefficientsg) are localised both in frequency and in physical space. They are implicitly defined
by the filter coefficients of the DWT. Figure2b shows the shapes of the Daubechies 8 basis functions used
in this study. They are one member of a family of orthogonal wavelets (Daubechies, 1992). Orthogonality
is not mandatory for this application. Bi-orthogonal wavelets are suitable as well. Basis functions merely
must be sufficiently smooth to obtain a good approximation of the covariance matrices with a small number of
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↓ ↓

l2,1 l2,2 l2,3 l2,4 g2,1 g2,2 g2,3 g2,4 g3,1 g3,2 g3,3 g3,4 g3,5 g3,6 g3,7 g3,8

low pass high pass
↓ ↓

l1,1 l1,2 g1,1 g1,2 g2,1 g2,2 g2,3 g2,4 g3,1 g3,2 g3,3 g3,4 g3,5 g3,6 g3,7 g3,8
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↓ ↓
l0,1 g0,1 g1,1 g1,2 g2,1 g2,2 g2,3 g2,4 g3,1 g3,2 g3,3 g3,4 g3,5 g3,6 g3,7 g3,8

a)

b)

Figure 2:
a) Hierarchical Discrete Wavelet Transform: The analysis transform takes the coefficientsl4,1,l4,2 . . . of a
gridded vector (top) and provides the coefficientsl0,1,g0,1,g1,1 . . . of the wavelet expansion (bottom).
b) Scaling functionsj (left, blue) and wavelet basis functiony (right, red) of the Daubechies 8 basis func-
tions used in this study.

coefficients. A more detailed discussion of different wavelet basis function properties is given inRhodin and
Anlauf (2007).

1.2 Univariate covariances

The forecast error covariance matrices used in this study were estimated by the NMC method from an ensemble
of 31 forecast differences at 0 UTC in October 2004. The NMC method takes the differences between forecasts
u24 andu48, valid at the same date but with different lead times (here 24 and 48 hours) as a surrogate for the
differences to the truth.

BNMC =
1
n

n

∑
i=1

(u48
i −u24

i )(u48
i −u24

i )T (1)

In addition to the averaging over the 31 days of the month we average over all instances of the ensemble
members shifted in zonal direction by multiples of the grid spacing. This considerably improves the statistical
basis but results in homogeneous covariances in the zonal direction.
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a) b)

c) d)

Figure 3:
a) Square root̂Lhh of the zonally averaged meridional covariance matrix for geopotential height. Only the
lower edge of the matrix is shown holding the 120 x 120 coefficients related to scaling functionsj0,1...15 and
waveletsy0,1...15, y0,1...15, y0,1...30.
b) Original (black line) and approximated (red) homogeneous correlation for geopotential height in zonal
direction. The curves are shown a second time with an offset of -1. to focus on the peak.
c, d) Original (black line) and approximated (red) inhomogeneous correlation for geopotential height in
meridional direction with a location at 60◦N and at 0◦.

Forecasts from the global model GME of geopotential height and wind componentv at the 500 hPa level in-
terpolated to a regular longitude-latitude grid with 0.75 degree resolution (480 x 240 grid-points) are used for
the investigations of Sections1.2and1.3. Since 240 factorises as 24×15, the wavelet basis function expansion
consists of 15 scaling functionsj0 and wavelet functionsy0 on the coarsest scale. In this 1-dimensional study
we present covariances either in zonal direction for a selected latitude (60◦ N), or in meridional direction on a
great circle touching the poles.

We want to obtain a representation of the matrixB in wavelet representation, i.e.:

WB̂WT = B (2)

To deriveB̂ in wavelet representation we apply the inverse transformation:

B̂ = W−1BW−T (3)

Technically, the inverse transformationW−1 has to be applied to all rows and all columns ofB. The subdivision
of a wavelet transformed vector in segments with coefficientsl0,.., g0,.., g1,.., . . . as shown in the bottom row of
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Figure2a is reflected in the respective subdivision of the rows and columns of the wavelet transformed matrix
in Figure1b.

Setting small coefficients of̂B to zero in order to obtain a sparse representation may lead to an indefinite matrix.
For that reason we extract the symmetric square root matrixL̂ with:

B̂ = L̂ L̂T (4)

The large coefficients of̂L show a similar sparsity pattern asB̂ (Figure3a). Now coefficients of̂L below a
certain threshold (0.5% in this example) can be neglected without the risk of an indefiniteB. The homogeneous
correlation function in zonal direction represented by this truncated wavelet expansion is shown in Figure
3b. The original correlation function shows spurious fluctuations in some distance to the center of the peak.
These patterns mainly consist of statistical noise due to the limited number of forecast differences used for the
estimation ofB. The noise is reproduced by the truncated wavelet expansion, although the accuracy is worse
than for the peak of the covariance function. It is possible to use wavelet transformed covariance matrices for
filtering of noise intentionally by setting to zero certain off-diagonal matrix coefficients. Filtering by coefficient
selection based on their statistical significance will be further discussed in Section1.4. The filtering properties
of diagonal matrices in wavelet transformed representation were investigated byPannekoucke et al.(2007).

Inhomogeneous zonally averaged meridional correlation functions are shown in Figure3c and d. Covariances
with a location at the equator have considerably different shape and length scale reflecting the inhomogeneity
in meridional direction. The spatial variations are reflected by respective variations of the coefficients of the
L̂ -matrices along the diagonals and the ‘branches’ in Figure3a. The meridional covariances with a location at
60◦ N show enhanced oscillations due to noise near the poles. Here the zonal averaging does not increase the
effective size of the ensemble.

1.3 Multivariate covariances

In atmospheric data assimilation covariances and cross-covariances are required for the prognostic variables
temperaturet, specific humidityq, and the wind componentsu andv. In general, covariances are modelled for
a different set of variables which are less correlated so that cross-covariances are more easily specified. Here,
these variables are chosen as geopotential heighth, stream-functiony (or its uncorrelated partyu), velocity
potentialc and relative humidityrh. The former prognostic variables can be derived from the latter:t by vertical
differentiation ofh; u andv by horizontal differentiation ofy andc. The most prominent cross-covariances
are those between geopotential height and wind due to the geostrophic balance condition. Cross-covariances
between the remaining variables are smaller and are often not accounted for.

We write the complete multivariate covariance matrix as:

B = WL̂L̂TWT (5)

Here,W denotes the application of the wavelet transform independently to each of the variablest, rh,y, andc.
L̂ is chosen as the block matrix:

L̂ =


L̂hh
L̂
yh L̂yuyu

. . L̂ cc

. . . L̂ rhrh

 (6)

Further off-diagonal matrices (indicated by the dots) may be added in equation (6) if cross-covariances be-
tween the remaining variables shall be accounted for. The block matrix decomposition ofL̂ does not imply
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a) b)

Figure 4:
a) Square root̂Lvh of the zonally averaged zonal cross-covariance matrix for geopotential height and wind
component v. Only the lower edge of the matrix is shown (120 x 120 coefficients).
b) Original (black line) and approximated (red) homogeneous correlation for geopotential height and wind
v in zonal direction.

matrix direction threshold coefficients coef./grid-point |Btr −B|∞ |Btr −B|2
Lhh zonal 0.5% 2400 5.0 1.5% 0.51%
L vh zonal 2.% 4425 9.2 6.1% 1.16%

Table 1: coefficients used and accuracy achieved for the approximated correlation functions.

any approximation beyond the errors introduced by the truncation of the wavelet expansions. The Cholesky
decomposition allows to represent any positive definite matrix by a triangular square root. This is done here on
a block matrix level.

The method presented above is frequently used for modelling multivariate covariances. In contrast to the usual
approach we do not advocate physically motivated analytical balance operators (e.g. relatey to to h by a
latitude dependent factor) but handle the cross-covariances consistently in the framework of sparse matrices in
wavelet representation. In this formulation the cross-covariances of stream-functiony and geopotential height
h is:

B̂
yh = L̂

yhL̂T
hh (7)

In order to show that even complex multivariate correlations can be handled by the wavelet approach without
explicitly referring to a parameterised model, we will directly derive the covariances between meridional wind
componentv and geopotential height̂Bvh instead of modelling cross-covariances between stream-function and
geopotential height:

B̂vh = L̂ vhL̂
T
hh (8)

B̂vh is estimated by the NMC-method similar to (1). Again L̂ vh is approximated by keeping only the largest
components. The results are shown in Figure4. NeitherB̂vh nor L̂ vh are diagonally dominant, but the coef-
ficients which are considerably different from zero are still located in the vicinity of the diagonal and on the
‘branches’ ofL̂ . The method is capable to represent complex cross-covariance matrices asBvh although the
number of coefficients required for an approximation of comparable accuracy is higher than forBhh. Table1
shows the number of coefficients used and the accuracy achieved for the correlation functions.
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1.4 Statistical aspects of sample covariance matrices
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Figure 5: Zonally averaged sample correlation (red) from a random simulation with known correlation
(blue). The shaded area (light red) indicates the sampling error estimated by the analysis.

The examples in the previous sections demonstrate that covariance matrices can be represented quite well by
sparse matrices with a clear structure. However, the finite size of realistic samples leads to statistical fluctuations
affecting coefficients both on and far from the diagonals or branches. This can be seen from the unbiased
estimator of covariance,

S=
1

N−1

N

∑
k=1

(
xk− x̄

)(
xk− x̄

)T
, with E{S}= B , (9)

whereB is the true covariance matrix andN the sample size. Assuming a Gaussian distribution of errors, we
find for the variance of the sample covariance coefficients (Mallat et al., 1998):

s2
i j ≡ E

{
(Si j −Bi j )

2
}

=
1

N−1

[
Bii B j j +(Bi j )

2
]

(10)

Obviously the expected error does not only depend onBi j but also on the diagonal elementsBii andB j j . The
latter will always dominate the sampling error for those coefficients which correspond to small correlations.

One can reduce the sampling error (10) by increasing the number of independent realizations of the random
process. A popular method to achieve this is zonal averaging or (weighted) averaging over neighbouring grid
points, thereby trading spatial resolution for smoothness. Zonal averaging of a correlation function with cor-
relation lengthL (corresponding toLx grid points) on a periodic grid (withNx grid points) roughly increases
the effective sample size by roughly a factorNx/(2Lx). Averaging over neighbouring grid points results in
somewhat smaller gains.
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To illustrate the statistical effects of sampling we generated a Gaussian random field with a known truth. We
chose as isotropic correlation on the sphere a 5th order function fromGaspari and Cohn(1999) with correlation
lengthL = 500km. Figure5 compares the zonally averaged sample correlation (ensemble sizeN = 31) at lati-
tude 60◦ (red line) with the given truth (blue line). The sampling error (shaded area, light red) was determined
by first calculating the zonally averaged correlation for each independent realization and then analysing the
resulting ‘time series’ for each correlation coefficient.

Note that the estimated sampling error compares quite well with the expectations from the above reasoning. In
particular, all correlation coefficients are contaminated by roughly the same amount of noise.

If we considered only those correlation coefficients statistically relevant where the ‘signal’ is above the ‘noise
level’ and which are continuously connected with zero separation, the grid point representation would retain 69
coefficients (for 512 zonal grid points).1 This number changes only slightly when stronger bounds are applied.
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Figure 6: Wavelet coefficients as derived from the sample after zonal averaging (red) and compared to true
values (blue). The typical distribution of coefficients within a diagonal block and an off-diagonal block are
shown on the left and on the right, respectively. The shaded areas (light red) indicate the sampling error.

Similar patterns are found when transforming the correlation matrix to the wavelet representation. The left-
hand side of figure6 shows the characteristics of the coefficients of a matrix block which is diagonal in the
wavelet scales. The largest coefficients always reside on the diagonal (offset 0 corresponds to wavelets at the
same position). The corresponding features of blocks off-diagonal in wavelet scales can be seen on the right-
hand side of figure6. Again, large coefficients are found in locations close to the branches as described in the
previous sections, while sampling noise is distributed roughly evenly over the coefficients within a block. This
general behaviour is also found for the other wavelet scales and scale combinations. However, at smaller scales
one usually finds very few coefficients to be above the noise level.

When applying a thresholding procedure to the wavelet coefficients, some care must be taken for their oscilla-

1The exact grid-space representation needs about 125 coefficients for 512 zonal grid points for an accuracy better than 1%.
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Figure 7: Filtering of homogeneous wavelet covariances by hard thresholding. The blue and green curves
correspond to the two choices of threshold as described in the text.

tory behaviour. We found it convenient to define:

ti j =
Si j

stddev(Si j )
·
√

N−1 . (11)

For normally distributedSi j theti j follow a Student’st distribution, which can be well approximated by a normal
distribution with unit variance for sufficiently largeN. Furthermore, for a block of adjacent coefficients we also
define a ‘moving averagec2’:

c2/d.o.f=
1
n ∑
{i j}

(ti j )
2 , (12)

which is roughlyc2-distributed withn degrees of freedom.2

We used the above criteria for a hard-thresholding procedure with the following choices:

• Threshold 1:|t|> 1 andc2/d.o.f> 1,

• Threshold 2:|t|> 2 andc2/d.o.f> 4.

Figure7 shows the resulting correlations when applying these thresholds to the wavelet representation. Note
that after application of the smaller threshold there are 54 coefficients left, while after application of the second
threshold only 37 coefficients remain. These numbers vary slightly with the choice of wavelet basis.

A further reduction in the number of coefficients is obtained by thresholding the remaining coefficients by their
magnitude.

2This procedure can also be generalised to the inhomogeneous case. SeeCai (2002) for details.
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Figure 8: Filtering of meridional (inhomogeneous) wavelet covariances by hard thresholding. The red
curve shows the sample correlation with 88◦S, the blue curve the corresponding wavelet covariance after
application of the threshold|t| > 1, c2/d.o.f.> 1. The sampling error (shaded area, light red) clearly
exhibits a strong increase towards the poles where zonal averaging is ineffective.

Filtering by statistical coefficient selection can also be performed for inhomogeneous correlations. Figure8
compares the zonally averaged meridional correlations with 88◦S with the hard-thresholded wavelet covariance
for the same random simulation as above. Note that the sampling error strongly increases towards the poles
where zonal averaging is ineffective, leading to possibly large, undesired correlations that need to be suppressed
explicitly.

Although statistical selection of wavelet coefficients has the appealing property of being position- and scale-
selective, there are still open questions with the approach described above and which are subject of further
research. Firstly, the statistical selection is only justifiable for the elements ofB but not for its symmetric
square rootL . Nevertheless, in those cases where the sparsity pattern ofL resemblesB it turns out that one can
take the coefficient selection pattern fromB and apply it toL , leading to very similar correlations. Secondly,
removing fromL large coefficients which are nevertheless considered noise can lead to a significant modifi-
cation especially of the diagonal (variance) terms. In our application this effect is most pronounced near grid
boundaries and the poles. A possible cure is renormalisation but needs further investigation.

1.5 Zonal averaging and factorisation in higher dimensions

Wavelet transforms on regular 3-D grids apply separately to each of the dimensions:

W3D = WxWyWz (13)

The PSAS formulation of the DWD 3D-Var does not depend on a specific grid. The covariance matrices can
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be represented on a different grid than that of the forecast model. For the time being we use zonal averaging
in order to increase the effective size of the NMC ensemble. To facilitate this, we chose a Gaussian grid with
512×256 grid-points in the horizontal. Vertical covariances are modelled on 64 pressure levels equidistant in
logp.

In higher dimensionŝB andL̂ remain sparse. As shown in Sections1.2and1.3 the number of coefficients per
grid-point is of order 10 in 1 dimension. In 2-d (horizontal or vertical) 30 to 50 coefficients per grid-points
are required for 1% accuracy (cf. Section1.6). In 3-d we expect of order 100 coefficients. Thus the operation
count of matrix vector productŝLx is comparable to that of the wavelet transformsWx and competitive to other
covariance modelling methods as for instance the spectral approach. Further savings in storage are possible if
symmetry and homogeneity due to zonal averaging is explored.

In higher dimensions it is not feasible to estimateB in grid-point representation and wavelet transform the
whole matrix (Equations (1), (3)) as in the 1-d case. Instead we first transform the forecast differencesu and
then directly estimatêB in wavelet representation:

B̂NMC =
1
n

(W−1u) (W−1u)T (14)

Only a limited number of coefficients is calculated and tested for relevance, starting at the diagonal and the
‘branches’ ofB̂. Furthermore, zonal averaging and extraction of the symmetric square root ofB̂ can be effi-
ciently performed using the Fourier transform in zonal direction. In detail the procedure is:

1. EstimateB̃ by the NMC method, using forecast differences which are Fourier transformed in the zonal
and wavelet transformed in the remaining directions:

B̃ =
1
n

(W−1
yz F−1

x u) (W−1
yz F−1

x u)T (15)

If zonal averaging is performed,B̃ factorises into independent block matrices for each Fourier coefficient.

2. Extract the square root by singular value decomposition:

B̃ = L̃ L̃T (16)

This step is feasible in multiple dimensions because the rank of the block matrices is limited by the
numbern of forecast differences.

3. Finally, transformL̃ to wavelet representation:

L̂ = W−1
x Fx L̃FT

x W−T
x (17)

Equation (17) is valid only for orthogonal wavelet transformsWx. This is the only step where orthogonal
transforms are required. Besides that, the procedure works with bi-orthogonal transforms as well. The trans-
formation is efficient because the operation count of the Fourier and wavelet transformation isO(N logN) for
homogeneous matrices̃L , instead ofO(N logN)2 or O(N2) for general matrices.

1.6 2-dimensional examples

Figure9 shows examples of two dimensional horizontal and vertical covariance functions, reconstructed from
their truncated wavelet expansions. The number of nonzero coefficients per grid-point is 40 and 30, respectively.
The difference to the original NMC derived matrices is less than 1%. Inhomogeneous, anisotropic, and non-
separable covariances can be represented without any restriction.
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a)
b)

Figure 9: Two-dimensional NMC derived zonally averaged covariance matrices for geopotential height,
reconstructed from their truncated wavelet expansions.
a) Horizontal correlations in 500hPa (512 x 256 grid-points).
b) Covariances with a location in 100 hPa height in a vertical slice at the equator

(512 x 64 grid-points, vertical axis from 1000 to 10 hPa equidistant in log p).

2 Implementation and experimentation in the DWD 3DVAR

In the PSAS (Physical Space Assimilation System) of the 3DVAR at DWD the forecast error covariance matrix
is implemented by an operator representation. For a full 3-dimensional wavelet approach the sequence of
operators is:

B = I W L̂ L̂T WT IT (18)

with L̂ : multivariate square root of̂B (Eq. (6))
W : 3D wavelet transform (Eq. (13))
I : interpolation operator

The operatorI interpolates from the Gaussian grid to the location of the observations or to the model grid-
points. It also derives temperaturet from geopotential heighth as well as wind componentsu and v from
stream-functiony and velocity potentialc by vertical or horizontal differentiation.
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Figure 10: RMS differences of geopotential height analysis using conventional observations only, com-
pared to the operational analysis in the southern extra-tropics: experiment with analytical covariances
(red, Exp.6135), NMC derived covariances equivalent to 3 months statistics (green, Exp.6149), and NMC
derived covariances equivalent to 12 months statistics and meridional localisation (blue, Exp.6192).

As an intermediate step we have replaced the former explicit separable covariance model by the equivalent
wavelet formulation:

B = IKW v L̂ v Wh L̂h L̂T
h WT

h L̂T
v WT

v KT IT (19)

with K : geostrophic balance operator relatingh andy.
L̂ v L̂h : square root of univariate vertical covariance and horizontal correlation matrices.

Wavelet representations of the former analytic formulation (isotropic covariances based on a Bessel function
expansion or on compactly supported covariance functions fromGaspari and Cohn(1999)) have been de-
rived. Analysis differences with respect to the old formulation due to the truncated wavelet representation are
negligible (of order 1% of typical analysis increments).

As the covariance matrix coefficients are directly derived from the NMC statistics without applying a parame-
terised model, a large number of forecast differences is required to minimise statistical noise. In order to study
the effect of limited ensemble size, random forecast differences were generated with the statistical properties of
the analytic forecast error covariances. Then, wavelet representations were derived from these artificial forecast
differences by the NMC method for different ensemble sizes.

Covariance matrices derived from NMC ensembles of limited size lead to spurious analysis increments espe-
cially in data sparse regions. Assimilation experiments have been conducted using conventional observations
only. Figure10 shows RMS differences of geopotential height analyses compared to the operational analyses.
Covariances derived from 3 months of forecast differences degrade the analyses significantly (Exp.6149). Anal-
ysis differences are especially large in the vicinity of the South pole as expected from the discussions in Section
1.4, Figure8. A significant reduction of noise is achieved (Exp.6192) if covariance matrices are derived from
one year of forecast differences and a weak meridional localisation is applied, to suppress correlations between
the North and the South pole.

As a next step of the development, covariance matrices derived from true NMC forecast differences of a one
year period will be used. We also investigate application of the methods advocated in Section1.4 to be able to
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use smaller ensemble sizes and to proceed towards the complete 3-dimensional implementation.

3 Prospects for flow dependent covariance modelling

The method presented here cannot be applied without modifications to analysis ensembles of typical sizen <
100 because statistical noise is not eliminated efficiently. There are two possible approaches to apply the
method within an Ensemble Kalman Filter framework. The aim is to blend the information derived from a
large ensemble of NMC forecast differences or EnKF members taken from a long period with that from a small
ensemble representative for the time of the analysis:

1. Add free parameters (for instance a diagonal matrixD) to the static covariance model (18) and adjust (fit)
the free parameters (diagonal coefficientsdii ) so that the statistical properties of the EnKF ensemble are
met.

B = I W L̂D L̂T WT IT (20)

This approach has been applied to the ECMWF analysis ensemble. Preliminary results indicate that ad-
justing just diagonal coefficientsdii is not sufficient to represent the statistical properties of the ensemble
(variances and length scales) reasonably well.

2. Estimate coefficients of̂B or L̂ from both the large ensemble and the small analysis ensemble and estimate
an optimal value from the respective values and spreads. This approach is attractive because

(a) The number of coefficients which may be relevant is limited and the locations of these coefficients
are known. They are mainly the same as those selected for the static covariance matrix as the
sparsity pattern of wavelet transformed covariance matrices is universal and not specific to the
situation.

(b) This approach basically is a localisation in wavelet representation which corresponds to both a
localisation in spectral and in grid-point representation (cf. the contributions of Mark Buehner and
Olivier Pannekoucke & Löık Berre within this volume).
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