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ABSTRACT

The initialisation of ensemble forecasts requires a representation of initial uncertainties. Whether data assimilation tech-
niques can provide accurate estimates of initial uncertainty depends on the adequacy of the representation of all relevant
sources of uncertainty in the assimilation process.

The first part of this study examines idealised assimilation and ensemble forecasting experiments with the Lorenz-95 sys-
tem. In this highly idealised framework, it is possible to generate accurate, flow-dependent estimates of initial uncertainty.
Sampling the distribution associated with the estimate of initial uncertainty leads then to a perfect ensemble prediction
system. Then, the sensitivity of the ensemble forecast skill to the specification of the initial uncertainty is quantified. This
is done through a series of ensemble forecast experiments using deliberately degraded estimates of initial uncertainty.
The results show that the ensemble forecast skill benefits mostly in the early forecast ranges up to 48 h from an accurate
flow-dependent estimate of initial uncertainty.

The second part of this study looks at the ECMWF Ensemble Prediction System (EPS). The reliability of the ensemble
standard deviation as predictor for the expected ensemble mean RMS error is diagnosed as function of the forecast lead
time for the operational EPS. Then, EPS experiments utilising initial perturbations from an ensemble of 4D-Var assimi-
lations with perturbed observations are evaluated. Results based on 20 cases indicate that ensemble forecasts using only
initial perturbations from the 4D-Var ensemble are significantly underdispersive. An EPS configuration which combines
initial perturbations from an ensemble of analyses with perturbations from initial singular vectors appears to be best.
It leads to a slight improvement of probabilistic skill in the extra-tropics and a significant improvement in the tropics
compared to the operational configuration which uses initial and evolved singular vectors.

1 Introduction

Ensemble forecasting was foreseen about four decades ago as the only practical way to get an estimate of the
probability density function (pdf) of the atmospheric state at a future time (Lewis 2005). The first operational
ensemble prediction systems were established 15 years ago. There are several competing techniques for obtain-
ing initial conditions from which the ensemble forecasts are started (Leutbecher and Palmer 2007). Ensemble
forecasts consist of multiple integrations of numerical weather prediction models starting from slightly different
initial conditions which are in the vicinity of a best estimate of the true atmospheric state.

If the pdf of the atmospheric state at initial time was known, one could simply draw a random sample of
initial states from the initial pdfp0 in order to obtain an ensemble of initial conditions. The initial pdfp0 is
expected to be strongly flow-dependent, i.e. it will vary from day-to-day. In the real world, it is quite difficult
to obtain accurate estimates ofp0 because the sources of uncertainty cannot be quantified well enough. This
encompasses for instance correlated observation errors or errors due to imperfections of the numerical weather
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prediction model that affectp0 through the use of a model generated prior, the background state. Therefore,
operational ensemble prediction systems can only hope to approximately samplep0.

This raises the question how important accurate estimates ofp0 are in order to generate skilful ensemble fore-
casts. In Section 2, we will investigate this question in the context of an idealised low dimensional system, the
Lorenz-95 system. In this context, the sources of uncertainty can be accurately quantified. An extended Kalman
filter will be used as data assimilation system. Thus,p0 will be approximated by a Gaussian distribution

pKF
0 = N(xa,Pa), (1)

The meanxa and covariancePa are predicted by the Kalman filter. The benchmark ensemble prediction system
is then defined as a 100-member ensemble with initial conditions sampled frompKF

0 . The benchmark ensemble
prediction system is compared with several other systems which use a degraded estimate ofp0. This section
will provide some guidance concerning the improvements in ensemble skill which could be expected from
using accurate flow-dependent estimates of initial uncertainty in an ensemble prediction system.

In Section 3, we will turn to the operational ECWMF Ensemble Prediction System (EPS) and investigate to
what extent the dispersion of the ensemble reliably predicts flow-dependent variations in uncertainty. Finally,
some preliminary results concerning the benefit to the EPS of using initial conditions from an ensemble of
data assimilations will be discussed in Section 4. Discussion and conclusions follow in Sections 5 and 6,
respectively.

2 Some experiments with the Lorenz-95 system

The intention of this part, is to provide rough guidance on the importance of estimates of the initial pdfp0 for
ensemble prediction. We will focus on the perfect model scenario. Both the system and the forecast model are
described by the following system of ordinary differential equations

dxi

dt
=−xi−2xi−1 +xi−1xi+1−xi +F, (2)

wherei = 1,2. . .N. Here, we use a forcing amplitude ofF = 8 andN = 40. Furthermore, cyclic boundary
conditions are employed,x41 = x1, x−2 = x38, x−1 = x39. A fourth-order Runge-Kutta scheme with a time
step of 0.025 is used to solve the system. The system (2) was introduced by Lorenz (Lorenz 1995; Lorenz and
Emanuel 1998; Lorenz 2005). The system is allegorical for the dynamics of “weather” at a fixed latitude. If
we associate a unit time with 5 d, the system has an error doubling time of about 2 d. This is similar to the
doubling times observed in current numerical weather prediction models (Simmons and Hollingsworth 2002).
For any of the 40 variables in Eq. (2), the climatological mean is 2.3 and the standard deviationsclim is 3.6.

An extended Kalman filter is used here as data assimilation system for the Lorenz-95 system. The equations
are standard and are given by Fisher et al. (2005), who used this system to illustrate the equivalence between
Kalman smoother and weak constraint long-window variational assimilation. The experiments reported here
use observations at every site and with a period of 6 h. The observation error standard deviation is set to 15%
of the climatological standard deviation.

The system (2) is nonlinear and the covariance evolution in the extended Kalman filter will approximate the
actual covariances. For stability reasons, it is necessary to add a source termQ in the covariance evolution
equation. The source term is referred to as model error covariance and is represented here by a diagonal matrix
Q = s

2
q I , whereI denotes the identity matrix. The standard deviationsq has been tuned in order to yield

the best deterministic forecasts. A value ofsq = 0.001 is used. The precise value ofsq is not so important.
However, withsq = 0, the Kalman filter will diverge after some time.
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Figure 1: Analysis error standard deviation (a) and correlation with site 20 (b) predicted by the extended
Kalman filter for the Lorenz-95 system. The average over 180 cases is shown as heavy blue lines. The values
for ten subsequent cases (2 days apart) are shown by the symbols, one case of the ten is highlighted by a red
line.

The Kalman filter predicts the analysis error covariance matrixPa. Figure 1 shows that the predictedPa is
indeed flow-dependent. For individual cases (red lines and black symbols), the standard deviation and the
correlations depart significantly from the mean over a large sample of cases (heavy blue lines). Now, we
consider the benchmark ensemble prediction system which consists of 100 forecasts which start from initial
conditions sampled from the multivariate Gaussian distribution (1). Figure 2a shows the ensemble standard
deviation and the ensemble mean RMS error as function of forecast lead time. Both curves agree very well
throughout the entire forecast range. This indicates that the ensemble prediction system is statistically consist.
The ensemble standard deviation starts from a value of about 3% of the climatological standard deviationsclim
at initial time and increases throughout the 30 day forecast range to a value close tosclim. Conversely, the Brier
skill score starts close to 1 and asymptotes towards 0 at 30 d (Fig. 2b).

In the following, the benchmark ensemble prediction system is compared with ensembles which sample initial
conditions from a multinormal Gaussian distribution

pC
0 = N(xa,C). (3)

All considered distributions have the statexa analysed by the Kalman filter as mean but the covarianceC differs
from the covariance predicted by the Kalman filter. The different settings for the covariance matrix are listed in
Tab. 1. Experiment A refers to the benchmark experiment; the other experiments are referred to by letters B–H.
In all experiments, an ensemble consists of 100 members. The Kalman filter was run for a period of 360 days.
Ensemble forecasts are started every 2 days. Verification statistics is based on a sample of 180 cases for all
experiments. The true state of the system is used for the verification. Therefore, the Brier skill score at initial
time is not equal to 1 (Fig. 2).

A statistically consistent ensemble prediction system should be able to predict flow-dependent variations of un-
certainty at all forecast ranges. For a perfectly reliable ensemble, i.e. members drawn from the same distribution
from which the true state is drawn, it can be shown that the ensemble standard deviation matches the expected
value of the ensemble mean RMS error (Leutbecher and Palmer 2007). This property can be exploited in order
to construct a spread-reliability diagram. For a given forecast lead time, pairs of ensemble standard deviation
and ensemble mean RMS error are considered for all 40 sites and all 180 cases. Then, the sample is stratified
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Figure 2: Ensemble standard deviation (spread) and ensemble mean RMS error (a) and Brier skill score (b)
for a 100-member ensemble using the initial uncertainty estimated provided by the extended Kalman filter.
The Brier Skill Score is shown for three events: anomalies exceeding−1,0,+1 standard deviation of the
climatological distribution.

Exp. C(tk) Description

A Pa
k benchmark: covariance predicted by KF

B Pa time mean covariance

C s
2
a I time and space average variance

D Pa
Π(k) random permutationΠ of KF-predicted cov.

E 4s2
a I inflated time and space average variance

F 1
4s

2
a I deflated time and space average variance

G 4s2
aDG correct total variance but wrong spatial distribution

H 4s2
aDH correct total variance but wrong spatial distribution

Table 1: Specification of analysis error covariance in the ensemble forecast experiments A–H.C(tk) denotes
the covariance estimate used for the ensemble starting at time tk.
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by the ensemble standard deviation into 20 bins corresponding to an interval of the spread distribution. The
first bin contains the pairs with spread not exceeding the 5% quantile of the spread distribution. The last bin
contains the pairs where the spread exceeds the 95% quantile of the spread distribution. Then, the RMS of the
ensemble standard deviation and the RMS of the ensemble mean error is computed for the pairs in each bin. For
a perfectly reliable ensemble the resulting 20 pairs of ensemble standard deviation and ensemble mean RMS
error should be on the diagonal. Note, that for small ensemble size one expects a deviation from the diagonal;
this is discusses in detail in (Leutbecher and Palmer 2007).

Figure 3 shows spread-reliability diagrams for experiments A, B, C and D for different forecast lead times.
Ensemble dispersion and ensemble mean RMS error (averaged over all 360 pairs in each bin) agree well for
the benchmark ensemble, Exp. A. Experiments B and C, which use a time-independent covariance estimate in
(3), show no variability of spread initially apart from sampling uncertainty, which is small for a 100 member
ensemble. However, over the first 48 hours a significant variability of the ensemble dispersion develops. From
48 h onwards, spread and ensemble mean RMS error agree well for Exp. B and C. In Exp. D, the covariance
C varies from day-to-day. However, these variations are completely independent of the actual variations of
uncertainty becauseC is obtained from the Kalman filter predicted covariancesPa

k through a random permu-
tation Π(k) of the forecast datestk. Thus, the spread-reliability curve is horizontal at initial time for Exp. D.
At a lead time of 48 h, the spread is still not perfectly reliable. However, at a lead time of 120 h, the spread is
reliable in all four experiments. There may still be a marginal positive benefit at a forecast lead time around 5
days of using the Kalman filter predicted flow-dependent covariance estimate because the range of the spread
distribution is slightly larger in Exp. A than in the other experiments.

The total variance of initial perturbations is close to the variance of the initial error in Exps. A–D. Even gross
errors in the specification of initial uncertainty (e.g. Exp. D) turn into a reliable prediction of uncertainty after a
time scale of 5 days. However, this is not the case for every choice of the covariance matrixC. Experiments E
and F demonstrate the persistent detrimental effect of over- and underdispersion, respectively. In the two
experiments, the covariance matrix is static and diagonal; the total variance is too large/small by a factor of
four. The unreliability of the spread is not lost with increasing forecast lead time in Exps. E and F in contrast
to B, C and D (Fig. 4). Obviously, the ensemble standard deviation will eventually asymptote towards the
climatological standard deviation in any experiment that uses initial perturbations of some kind.

Even if the total variance is correct, the wrong spatial distribution of the initial variance can cause a persistent
degradation of the spread-reliability. Experiments G and H were designed to illustrate this effect. The variances
is specified byC = 4s2

aD, whereD = DG and D = DH are diagonal matrices. In Exp. G, the variance is
concentrated in sites 1–10, i.e.

[
DG

]
j j = 4 for j = 1, . . . ,10 and 0 otherwise. In Exp. H, the variance is non zero

at every 4th site:[DH ] j j = 4 if j mod 4= 1 and 0 otherwise. In both experiments, the total variance is correct

tr
(
s

2
aDG

)
= tr

(
s

2
aDH

)
= tr

(
Pa

)
. (4)

Figure 5 shows that the spread in Exp. H is more reliable than the spread in Exp. G. The latter experiment still
exhibits significant unreliability at a lead time of 5 d.

Some of the ensemble forecasts, e.g. Exp. D and H, start with initial uncertainty estimates that are very inaccu-
rate, yet they evolve into ensembles with a reliable spread distribution during the first 5 days. Other ensembles,
like Exp. G, need significantly longer to evolve into an ensemble with a reliable spread distribution. Let us now
try to understand the dynamical principles that determine the time-scale required to obtain a reliable spread
distribution. The argumentation is purely qualitative and is not an attempt of a formal proof. Let us consider
the ensemble forecast at a locationk and forecast lead timet. Furthermore, letΩk(t) denote the region of points
at initial time on which the forecast at locationk and lead timet depends. In the Lorenz-95 system1, the size

1and also in the real atmosphere
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Figure 3: Spread-reliability diagrams for the experiments A (red), B (blue circles), C (blue, crosses) and D
(light blue, circled plus) with the Lorenz-95 system. The forecast lead times are 0 h (a), 12 h (b), 24 h (c),
48 h (d) and 120 h (e).
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Figure 4: Spread-reliability diagrams for over- and underdispersive ensembles, Exps. E (blue, circles) and
F (light blue, circled pluses). The forecast lead times are 48 h (a) and 120 h (b).

of Ωk(t) is expected to increase with lead timet until it will eventually fill the entire domain. Figure 1a shows
that deviations of the accurate Kalman filter estimate of the analysis error variance from its mean values

2
a are

large on small scales, say,� 10 sites and small on the larger scales (> 10 sites). The leading order error of the
ensemble spread is expected to be given by the error of the analysis error variance averaged over the domain of
influenceΩk(t) if we neglect that the dynamics can amplify uncertainty originating from certain parts ofΩk(t)
and attenuate uncertainty originating from other parts ofΩk(t). In other words, errors in the initial covariance
C potentially cancel if the spatial scale of the dominant variance errors is significantlyt smaller than the size
of Ωk(t). In Exps. B, C, D and H, the error in the initial variance is dominated by small scales which implies
that after relatively short lead times of the order of 2 d,Ωk(t) is large enough so that the variance averaged over
Ωk(t) is fairly accurate. In contrast, in Exp. G and also in Exps. E and F the variance averaged overΩk(t) for
t of the order of 2 d will still have significant errors. This, simple theoretical explanation suggests that flow-
dependent variations of initial variance are important up to a lead time at which the domains of influence for
individual locations become significantly larger than the dominant spatial scale of flow-dependent anomalies
of initial variance.

Now, we will examine whether the evolution from an somewhat unreliable spread distribution to a more reliable
spread distribution is also present in an operational ensemble prediction system for the atmosphere.

3 The operational EPS

This section describes aspects of the spread-reliability of the operational Ensemble Prediction System (EPS)
at ECMWF. The purpose of this brief interlude is to set the scene for the research experiments presented in
the next section. Operational daily runs of the EPS started in May 1994. Since then, initial uncertainties were
represented in the EPS with singular vectors of the propagator. The propagator of the tangent-linear system is
defined over a 2-day interval starting at the forecast initial time. The dynamics is linearised with respect to a
nonlinear forecast. The singular value decomposition of the propagator uses a non-dimensionalisation based
on the total energy norm (Buizza and Palmer 1995; Palmer et al. 1998). In the currently operational EPS,
the extra-tropical perturbations in each hemisphere are sampled from an isotropic Gaussian distribution in the
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Figure 5: Spread-reliability diagrams for ensemble forecast experiments G (blue, circles) and H (light
blue, circled pluses) with the Lorenz-95 system at lead time 48 h (a) and 120 h (b). The incorrect spatial
distribution of the variance in Exp. G and H is illustrated in panels (c) and (d), respectively.
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Figure 6: Ensemble standard deviation (plain lines) and ensemble mean RMS error (lines with symbols)
of 500 hPa geopotential for the operational EPS. Northern Hemisphere mid-latitudes (35N–65N), winter
DJF05/06 (red-dashed) and winter DJF06/07 (black-solid).

subspace spanned by the leading 50 singular vectors; details are described by Leutbecher and Palmer (2007).
Through the propagator, the initial perturbations are obviously flow-dependent. However, the initial time norm,
which should be based on an estimate of the analysis error covariance matrix (Palmer et al. 1998), is not flow-
dependent. The ensemble consists of 50 perturbed forecasts and one unperturbed forecast. The integrations are
performed with variable resolution (VAREPS, Buizza et al. 2007). The horizontal resolution corresponds to
50 km up to a lead time of 10 d and then drops to 80 km for lead times from 10–15 d. The number of vertical
layers is 62. The model tendencies are perturbed with a stochastic diabatic tendency scheme, a.k.a. stochastic
physics (Buizza et al. 1999). The net tendencies of the physical parameterisations are multiplied by random
numbers drawn from a uniform distribution in the interval[0.5,1.5]. The random numbers are kept fixed in tiles
of 10 ◦×10 ◦ and over a period of 3 h.

The current EPS resolution was introduced in February 2006. Prior to that date, the resolution was 80 km
with 40 layers for the vertical discretisation. As the higher resolution system is more active, the amplitude of
the initial perturbations based on the evolved singular vectors could be reduced by 33%. This resulted in an
improved match between spread and ensemble mean RMS error (Fig. 6).

For the last winter season, DJF06/07, the spread-reliability has been computed for 500 hPa geopotential in the
Northern Hemisphere extra-tropics (Fig. 7). The statistics has been computed on a regular 2.5 ◦×2.5 ◦ grid.
The area represented by each grid point has been accounted for by using weights proportional to the cosine
of latitude. Variations in spread correspond to significantly smaller variations of the expected ensemble mean
RMS error for the shorter lead times 1 d and 2 d while the spread at 5 d is almost perfectly reliable. The high
level of spread-reliability is maintained at lead times larger 5 d (not shown).

4 Ensemble forecasts using ensembles of 4D-Var analyses

Now, experimentation with a lower resolution version of the ECMWF EPS is described which investigates
potential merits of using initial perturbations based on an ensemble of analyses. These are generated by an en-
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Figure 7: Spread reliability for 500 hPa geopotential at lead time 24 h (a), 48 h (b) and 120 h (c) for
operational ECMWF EPS. Northern Hemisphere mid-latitudes (35N–65N), winter DJF06/07.

semble of 10 independent 4D-Var assimilations. These 4D-Var experiments are described in detail by Isaksen
(2007). Observations are perturbed with random numbers drawn from a Gaussian distribution. The standard
deviation of the Gaussian is set equal to the estimate of the observation error standard deviation used in the
operational unperturbed assimilation. The random numbers are uncorrelated except for atmospheric motion
vector winds which are perturbed with horizontally correlated noise. The model tendencies are perturbed with
a stochastic backscatter scheme. The scheme originates from the kinetic energy backscatter scheme devel-
oped by Shutts (2005). Instead of the cellular automaton it uses a first order autoregressive process in spectral
space as pattern generator (Judith Berner pers. comm.). The scheme directly perturbs vorticity tendencies. The
perturbation amplitude is modulated by an estimate of the kinetic energy dissipation rate as in the original
scheme. The vertical structure is imposed by requiring that the pattern has the same vertical correlation as
the background error statistics (Isaksen 2007). In addition, temperature and divergence are perturbed by struc-
tures implied by patterns resulting from applying non-linear balance and the omega-equation to the vorticity
perturbations. The analysis is computed at a resolution of TL255 (∼ 80 km) and 91 levels (model top at 1 Pa).

Ensemble forecasts discussed in this section consist of 50 members with a resolution of TL255 and 62 levels
(model top at 5 hPa). The tendencies of the ensemble members are perturbed with the operational stochastic
physics scheme. Four different configurations for the initial perturbations are considered

• initial singular vectors and evolved singular vectors (SV i+e)

• initial singular vectors only (SV i)

• perturbations of EnDA members about ens. mean (EnDA)

• EnDA perturbations and initial singular vectors (EnDA+SV i)

The initial perturbations are added to the interpolated operational analysis (TL799L91). Ensemble forecasts are
started every other day for a period in September/October 2006. The sample consists of 20 cases. The forecast
range is 10 days.

Figure 8 shows 500 hPa geopotential spread and ensemble mean RMS error versus lead time for the Northern
Hemisphere mid-latitudes. Experiment (EnDA) is clearly underdispersive at all forecast lead times. In the
other three experiments, the spread is fairly similar and relatively close to the ensemble mean RMS error.
Replacing evolved singular vectors by ensemble data assimilation perturbations (SV i+e→EnDA + SV i) leads
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Northern Hemisphere mid-latitudes (35N–65N) for the ensemble data assimilation (EnDA) experiments. 20
cases in Sep/Oct 2006.
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Figure 9: Spread reliability for 500 hPa geopotential at lead time 24, 48 and 120 h over the Northern
Hemisphere mid-latitudes (35N–65N) for the EnDA experiments. 20 cases in Sep/Oct 2006.

to a moderate reduction in spread in the early forecast range (≤ 3 d) and a moderate increase in spread in the
late forecast range (≥ 7 d). This is beneficial for the spread-skill relationship.

The spread-reliability statistics in Fig. 9 also emphasises the underdispersive characteristics of experiment
(EnDA). The spread-reliability of the three other configurations is almost identical for lead times≥ 2 d. At a
lead time of 1 d, experiment (EnDA+SV i) appears slightly superior to Exp. (SV i+e) as the ensemble standard
deviation in the three bins with largest spread is lower in the former configuration, thus, reducing somewhat the
over-dispersion.

The verification of 500 hPa geopotential focuses on the large-scale aspects of the flow. Therefore, it is of interest
to complement it with the verification of another parameter which is dominated by smaller spatial scales. Here,
we present the zonal wind component at 850 hPa. Figures 10 and 11 show the spread and ensemble mean RMS
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850 hPa in the Northern Hemisphere mid-latitudes (35N–65N) for EnDA experiments. 20 cases in Sep/Oct
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Figure 11: Spread reliability for the zonal wind component at 850 hPa and lead time 24, 48 h over the
Northern Hemisphere mid-latitudes (35N–65N). EnDA experiments, 20 cases in Sep/Oct 2006.

error versus lead time and spread-reliability statistics, respectively. The results agree with those for 500 hPa
geopotential in a qualitative sense. Figure 12 shows the Ranked Probability Skill Score (RPSS) for the mid-
latitudes and the Northern Hemisphere extra-tropics for the four experiments. The RPSS has been computed
using ten climatologically equally likely bins. Experiment (EnDA) is clearly inferior to the three experiments
which use singular vectors. The latter three are quite similar in terms of their probabilistic skill. For the extra-
tropics, Exp. (EnDA+SV i) is slightly superior to Exp. (SV i+e), i.e. the operational configuration, at all forecast
ranges.

In Exps. (SV i) and (SV i+e), the initial conditions are unperturbed in large parts of the tropical region. In
contrast, the initial conditions are perturbed in the entire tropical belt in Exps. (EnDA) and (EnDA+SV i),

196 ECMWF Workshop on Flow-dependent aspects of data assimilation, 11–13 June 2007



LEUTBECHER ET AL.: ENSEMBLE FORECASTING AND FLOW-DEPENDENT. . .

0 1 2 3 4 5 6 7 8 9 10
fc-step (d)

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

0.8
R

an
ke

d 
P

ro
ba

bi
lit

y 
S

ki
ll 

S
co

re
10 categories, sample of 20 cases; 2006092212 - 103012, area n.hem.mid

u at 850hPa

SV i+e

SV i

EnDA

EnDA+SV i

0 1 2 3 4 5 6 7 8 9 10
fc-step (d)

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

R
an

ke
d 

P
ro

ba
bi

lit
y 

S
ki

ll 
S

co
re

10 categories, sample of 20 cases; 2006092212 - 103012, area n.hem
u at 850hPa

SV i+e

SV i

EnDA

EnDA+SV i

Figure 12: Ranked probability skill score for the zonal wind component at 850 hPa for the EnDA experi-
ments. (a) Northern Hem. mid-latitudes (35N–65N), (b) Northern Hem. extra-tropics (20N–90N).
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Figure 13: Ranked probability skill score (a) and ensemble standard deviation and ensemble mean RMS
error (b) over the tropics (20S–20N) for the zonal wind component at 850 hPa.

which use perturbations from the ensemble of analyses. This has a significant positive impact on the RPSS
(Fig. 13a). The operational configuration, Exp. (SV i+e), has significantly lower probabilistic skill than Exp.
(EnDA+SV i) at all lead times. The spread in the latter experiment is the largest of all four configurations and
the most consistent with the RMS error of the ensemble mean (Fig. 13b). Initially, Exp. (EnDA) has a similar
spread as Exp. (EnDA+SV i). However, from a lead time of 48 h onwards, the spread is noticably lower in the
former experiment indicating the importance of dispersion in the extra-tropics for maintaining a realistic spread
in the tropics.

5 Discussion

The results presented in the previous section indicate that the skill of the EPS could be improved by replacing
the initial perturbations based on evolved singular vectors by initial perturbations obtained from an ensemble
of analyses. These results also indicate a promising avenue for future research as it is anticipated that further
improvements in probabilistic skill can be achieved if the level of underdispersion in the ensemble of analyses
is reduced. This work may eventually lead to an EPS that uses only initial perturbations from an ensemble of
analyses. This would make the EPS more similar to the Canadian ensemble prediction system which is based
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on an Ensemble Kalman filter which uses perturbed observations (Houtekamer et al. 1996, 2005). However,
at present, the initial singular vectors are still an essential component of the ECMWF EPS as they efficiently
compensate for missing sources of uncertainty or sources of uncertainty that are not adequately represented in
the ensemble of analyses.

Further work is planned to examine the sensitivity of the results to the configuration of the ensemble of varia-
tional assimilations. The main aspects that will be considered are

• inner and outer loop resolution in 4D-Var

• the number of analysis members

• the selection of observations, in particular satellite radiances

• the representation of correlated observation error in the perturbations applied to the observations

• the representation of model uncertainty in the analysis ensemble. Revised versions of the backscatter
algorithm will be considered as well as optimal tendency perturbations, also known as forcing singular
vectors (Barkmeijer et al. 2003).

When this work is more mature, further tests will be performed with ensemble forecasts run at the resolution
of the operational EPS (TL399L62).

Should further experimentation confirm the need to keep initial singular vectors in the EPS, it seems worth to
investigate the impact of using uncertainty information from the ensemble of analyses in the singular vector
initial norm. Currently, the singular vectors are computed with a total energy norm at initial time which can
be viewed as a computationally cheap approximation of an analysis error covariance based norm (Palmer et al.
1998). A more sophisticated and computationally more costly approximation of the analysis error covariance
norm is provided by the Hessian of the variational cost function (Barkmeijer et al. 1998). Singular vectors
computed with this norm are referred to as Hessian singular vectors. Barkmeijer et al. (1999) and Lawrence
et al. (2007) have compared the skill of ensemble forecasts using initial perturbations based on Hessian singular
vectors with ensemble forecasts using total energy singular vectors. Both studies found that the impact of using
Hessian singular vectors on probabilistic skill was close to neutral overall. This might be due to the fact that
the Hessian singular vectors are computed with a static background error covariance term and, therefore, the
implied initial uncertainty estimate may lack important flow-dependent variations. Ensembles of analyses offer
the prospect of computing singular vectors with a flow-dependent analysis error (co)-variance metric following
earlier work by Gelaro et al. (2002) and Buehner and Zadra (2006). It is possible to obtain these analysis error
(co)-variance singular vectors as solution of a symmetric ordinary eigenproblem. Thus, they could be computed
at roughly the same cost as the operational total energy singular vectors.

6 Conclusions

One of the outstanding challenges in predictability and data assimilation is the estimation of initial condition
uncertainty. Due to the flow-dependence of error growth, such estimates of initial uncertainty are expected to
vary from day to day. The probabilistic skill of an ensemble prediction system is expected to increase with the
realism of the initial uncertainty representation. However, it is difficult to obtain accurate estimates of initial
uncertainty because some of the relevant sources of uncertainty are poorly known themselves. We expect that
initial uncertainty estimates are sensitive to, for instance, the representation of model uncertainty and to the
representation of observation error correlations.
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In principle, data assimilation techniques can provide accurate flow-dependent estimates of initial uncertainty
when all sources of uncertainty are precisely known and represented. This is demonstrated here within the
framework of a 40-variable Lorenz-95 system using an extended Kalman filter. A benchmark ensemble fore-
casting system is considerd which samples initial conditions from the multi-variate Gaussian distribution pre-
dicted by the extended Kalman filter. The benchmark ensemble is then compared with other ensembles that
start from inferior initial uncertainty estimates but the same unperturbed analysis. The key diagnostic employed
here is aspread-reliabilitystatistic. It considers, pairs of ensemble mean RMS error and ensemble standard
deviation for individual locations and forecast start dates. These pairs are stratified by the ensemble standard
deviation and then the RMS error and spread are computed over subsets corresponding to a spread-interval.
This statistic focuses on the ability of an ensemble prediction system to capture variations in forecast uncer-
tainty. Then, several ensemble prediction systems are considered that use flow-independent estimates of initial
uncertainty. The results indicate that the skill of ensemble forecasts benefits from accurate, flow-dependent es-
timates of analysis error covariances at lead times shorter than∼ 5 days. Furthermore, the experiments suggest
that only gross systematic errors in representing initial uncertainty, like a systematic over- or underestimation
of the initial error variance over a large region, appear to be capable of deteriorating the ensemble forecasts at
longer lead times (> 5 d).

Verification of the operational ECMWF EPS (TL399L62) for the last winter season (DJF06/07) shows that the
ensemble standard deviation matches fairly closely the ensemble mean RMS error for 500 hPa geopotential
when considering spatially aggregated statistics. However, the verification in terms ofspread-reliabilityreveals
that, for the early forecast ranges (≤ D+3), the EPS is systematically over-dispersive at locations and times
when the spread is large and systematically under-dispersive when the spread is low. The spread-reliability
improves with lead time. By 5 days, the spread is almost perfectly reliable. The gradual improvement of the
spread-reliability with lead time was also observed for the Lorenz-95 system and may be a generic property of
nonlinear systems which sensitively depend on initial conditions.

Results of first tests of initial perturbations from an ensemble of 4D-Var analyses in a TL255L62 version of the
EPS were presented. The ensembles of 4D-Var analyses use perturbed observation values and a representa-
tion of model uncertainty based on a stochastic kinetic energy backscatter algorithm. The analysis ensembles
are discussed in detail by Isaksen (2007). Four different configurations for the ensemble prediction system
were considered:(i) an ensemble using initial perturbations from the ensemble of analyses,(ii) an ensemble
using initial perturbations based on initial and evolved singular vectors (the operational configuration),(iii) ,
an ensemble using initial perturbations based on initial singular vectors only, and(iv) a hybrid configuration
using initial perturbations based on perturbations from the ensemble of analyses plus perturbations based on
initial singular vectors. Results are based on 20 cases in September/October 2006. The ensemble using initial
perturbations from an ensemble of analyses exhibits a lack of dispersion at all forecast ranges up to 10 days.
It is concluded that initial singular vectors are still required to represent the effect of unknown aspects of the
initial error distribution on ensemble dispersion. However, despite the underdispersiveness of the ensemble of
analyses, experiments indicate that replacing the operational initial perturbation configuration by the hybrid
configuration(iv) which uses perturbations from the ensemble of analyses instead of the evolved singular vec-
tor perturbations has a moderately positive impact in the extra-tropics and a significantly positive impact in
the tropics on the probabilistic skill of the EPS. This positive impact cannot be obtained by simply using only
initial singular vectors in the EPS.
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