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1 Introduction

Within the EU-funded COCO and GEMS projects ECMWF has been building a greenhouse gas data assimi-
lation system (Engelen et al., 2004; Engelen and McNally, 2005). The idea is to monitor atmospheric concen-
trations of CO2, CH4, and N2O by using observations from various satellites using the state-of-the-art data
assimilation system at ECMWF. These consistent fields of atmospheric trace gases can then be used in surface
flux inversions that are currently based on in-situ surface flask data only. Hopefully, the satellite observations
will be able to fill the large spatial and temporal gaps in the surface flask network.

2 Sink variable

Within the COCO project, CO2 was introduced in the 4-dimensional variational (4D-Var) data assimilation
system as a special column variable. In a normal 4D-Var configuration variables are added to the state vector
(X ) at time t0 and then adjusted to fit the observations within the assimilation time window as best as pos-
sible (minimizing root-mean-square (RMS) differences), using the model dynamics and physiscs as a hard
constraint (see Figure 1). However, CO2 was added to the minimization as tropospheric column amounts for
each observation of the Atmospheric Infrared Sounder (AIRS) instrument (Aumann et al., 2003). These are
then adjusted individually as part of the total cost minimization. The output of one analysis cycle consists
then of all the relevant atmospheric fields (temperature, winds, humidity, etc.) together with CO2 tropospheric
column estimates at all the AIRS observation locations that go into the assimilation. Because CO2 is not part
of the assimilation transport model, there are no forecasts for CO2 and CO2 information from one analysis
cycle cannot be used in the next analysis cycle. Also, to generate global fields, individual estimates have to be
gridded in for instance 5

�
by 5

�
boxes for a certain time period.

A set of only 18 AIRS spectral channels (out of 324 available channels) sensitive to tropospheric CO2 was used
to estimate the tropospheric CO2 columns. These channels were chosen to minimize the effect of water vapour
and ozone absorption. Because the signal of CO2 in the observed radiances is so small, it is easily obscured by
uncertainties in the water vapour and ozone distributions. For the background constraint a global mean value of
376 ppmv was chosen with a background error standard deviation of 30 ppmv. The analysis error was estimated
based on the background error, the observation error, and the sensitivity of the observations to atmospheric
CO2. This sensitivity largely depends on the temperature lapse rate and the depth of the tropospheric layer
(i.e., the height of the tropopause).

More than one year of AIRS data has been processed and Figure 2 shows monthly mean results for March 2003,
September 2003, and March 2004. The fourth panel shows the monthly mean analysis error for March 2003.
White areas represent areas with extensive cloud cover throughout the month. The largest signal in atmospheric
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X0

Figure 1: Schematic diagram of the principles of 4D-Var in a normal configuration (left panel) and with
the extra CO2 column variable (right panel). The initial state X0 and optionally the CO2 column amounts
are adjusted such that the root-mean-square difference with the observations is minimized. A background
term (Jb) constrains these adjustments.
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Figure 2: Monthly mean analysis results for March 2003, September 2003, and March 2004 as well as the
monthly mean analysis error for March 2003.
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CO2 concentrations comes from the terrestrial biosphere. Vegetation absorbs CO2 by photosynthesis and
emits CO2 through respiration. Plant litter on and in the soil releases CO2 as well due to decomposition. A
strong seasonal cycle is produced, although the annual net biosphere flux is very close to zero. The terrestrial
biosphere also creates a latitudinal gradient in the atmospheric concentrations due to the large amount of land
in the northern hemisphere compared to the southern hemisphere. This latitudinal gradient is amplified by the
anthropogenic emissions that mainly originate from the northern hemisphere. Both the seasonal cycle and the
latitudinal gradient are visible in the results of Figure 2. It is encouraging to see that the assimilation is capable
of producing these spatial and temporal variations without having that information in the background. March
2004 shows generally higher CO2 concentrations than March 2003, representing the upward trend in global
atmospheric CO2. The difference between March 2003 and March 2004 at the location of Hawaii is 1.6 ppmv
compared to the 1.4 ppmv observed at the Mauna Loa flask station. The monthly mean error shows the clear
dependence of the analysis error on the temperature lapse rate as well as the thickness of the tropospheric layer.
Errors are smallest in the tropics were the tropopause is high and the temperature lapse rate is large, while they
increase at higher latitudes where the tropopause is lower. The relatively low errors over Europe are caused by
a higher tropopause (deeper tropospheric layer) in the sub-tropical air mass.

The presentation of monthly mean results is interesting by itself, but an important check of the validity of
our analysis results is by comparing these results to independent observations of atmospheric CO2. There
are only very few data sources for 2003 and we can generally not use the surface flask data, because our
estimates represent a layer between about 700 hPa and the tropopause, while the surface flasks are sampled
in the boundary layer. Only if we are sure that the full tropospheric CO2 profile is well-mixed, a comparison
would be useful. However, Dr Hidekazu Matsueda and colleagues at the Japanese Meteorological Agency have
been measuring CO2 on board commercial flights of the Japanese Airlines (JAL) flying between Japan and
Australia (Matsueda et al., 2002). These observations consist of automatic flask samples gathered at altitudes
between 8 and 13 km on biweekly commercial flights. For 2003, 21 flights were available for our comparisons.
Figure 3 shows the CO2 annual cycle for both the flight observations and the assimilation estimates. For the
full processed period (1 January 2003 - 31 March 2004), CO2 analysis estimates were sampled in 6

�
x 6

�
boxes

around the locations and over a period of 5 days around the date of the flight observations. We then generated
three plots that represent the northern hemisphere region, the equatorial region, and the southern hemisphere
region, by averaging the respective box averages for each region together. The figure shows that the analysis
estimates follow the JAL observed annual cycle quite well. All differences fall within the 1-σ error bars and are
of the order of 1 ppmv in most cases. There is a clear improvement compared to the used background, which
is 376 ppmv throughout the year. The main anomaly can be seen in both the northern hemisphere and the
southern hemisphere in January and February, in which period the analysis estimates are consistently higher
than the JAL observations.

3 4D-Var system

Within the GEMS project the above described system is being extended to a full 4D-Var greenhouse gas data
assimilation system. This requires implementation of the greenhouse gases in the forecast model as well as a
proper specification of the 3-dimensional background constraint. We have outlined the main ingredients for
the system in the subsections below.

3.1 Observations

The main focus initially will be on the assimilation of satellite data. In-situ data (e.g., surface flasks, tall tower
continuous measurements, airborne flasks) will be used as validation data, but can be added to the data analysis
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Figure 3: Comparison of CO2 estimates with JAL observations for three different latitude zones from Jan-
uary 2003 to March 2004. Missing ECMWF data are caused extensive cloud cover in the area.
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at a later stage. Currently, ECMWF assimilates AIRS radiances operationally. These observations were already
used for the CO2 column estimates as described above. In the next few years we expect to assimilate infrared
radiances from the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder
(CrIS) instruments. All three instruments measure the infrared spectrum at high spectral resolution and these
observations can be used to constrain atmospheric temperature, water vapour, carbon dioxide, ozone, carbon
monoxide, nitrous oxide, and methane. In 2008 two instruments specifically designed to observe CO2 will be
launched: the Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT).
Both instruments will measure the solar reflection in the 1.6 µm and 2.0 µm CO2 absorption bands. While this
measurement method will be very sensitive to lower tropospheric CO2 (in contrast with the infrared methods), it
also suffers from aerosol and cirrus cloud scattering. Uncorrected single scattering will result in underestimated
CO2 columns, and uncorrected multiple scattering will result in overestimated CO2 columns. This scattering
correction requires very accurate radiative transfer modelling, which is even more pressed by the necessity
to account for polarization effects. The OCO and GOSAT science teams will initially most likely retrieve
CO2 column amounts for clear pixels only, which we will try to assimilate together with the infrared satellite
radiances. A good error characterization of these column amounts will be critical.

3.2 Forecast model

A vital requirement of any data assimilation system is a forecast model that is able to match the observations
within the specified error margins. Fitting the observations by only adjusting the initial state assumes a hard
constraint from the model dynamics and physics. This can lead to significant errors in the analysis, if the
model is not accurate enough. The greenhouse gases have been implemented as tracers in the Integrated
Forecasting System (IFS) forecast model. The tracer transport (both advection and vertical mass fluxes) is
currently being tested by using Radon and SF6 as tracers. For CO2 we also implemented climatological surface
fluxes. For the ocean we use fluxes based on Takahashi et al. (1999), the fossil fuel emissions are based on
Andres et al. (1996), and the natural biosphere fluxes are based on the CASA model (Randerson et al., 1997).
Figure 4 shows examples of these fluxes with natural biosphere fluxes for December and July in the top two
panels, and Jult ocean fluxes and annual mean anthropogenic emissions in the bottom panels. The top panels
show the very distinct seasonal cycle of the northern hemisphere vegetation, as well as the effetc of dry and
wet seasons on the tropical vegetation. The ocean fluxes show the release of CO2 into the atmosphere from the
warm tropical water and the uptake of CO2 from the atmosphere in the cold sinking water around Greenland.
At mid-latitudes, phytoplankton generally takes CO2 from the atmosphere into the ocean.

Monthly mean simulation results are shown in Figure 5 for March 2003. The simulation was started at 1
January 2002 and ran 12 hour forecasts every 12 hours starting from operational analysis fields. Surface
fluxes are interpolated in time from monthly means for the biosphere and the ocean, while the anthropogenic
emssions are an annual mean. These surface fluxes will be improved to contain day-to-day variability and
even diurnal variability in case of the biosphere. The figure shows the clear zonal gradient between northern
and southern hemisphere in the northern hemisphere spring, because of the stalled photosynthesis during the
winter in combination with CO2 release due to respiration and due to anthropogenic emissions. The effect of
tropical convection is also visible.

3.3 Bias correction

4D-Var data assimilation is based on the general assumption that errors are random. Therefore, any significant
systematic errors in the observations and/or the radiative transfer model need to be corrected before proper
assimilation can be done. Model bias should be corrected as well, but is difficult to estimate. Ideally, model
bias should be corrected by improving the model itself. Apart from biasing the background state and therefore
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Figure 4: Monthly mean biosphere fluxes from the CASA model for December (top left) and July (top right);
monthly mean ocean fluxes from Takahashi et al. (1999) (bottom left); annual mean anthropogenic fluxes
from Andres et al. (1996) (bottom right). Biosphere fluxes are positive into the vegetation, while ocean and
anthropogenic fluxes are positive into the atmosphere.
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Figure 5: Simulated monthly mean zonal mean CO2 mixing ratios (left) and monthly mean column averaged
CO2 mixing ratios (right) for March 2003 after 15 months of spin-up.

the analysis state, the forecast model is also used as a hard constraint within the assimilation time window.
Any bias within this time period (usually 12 hours) will bias the information from the observations. Biases
are generaly detected by monitoring the so-called O - B departures (differences between the observations and
the model simulated observations). These departures show all the random variability as well as systematic
differences. Systematic differences on time scales of 2 - 4 weeks are then denoted as bias. However, by using
this method, model bias might end up in the observation bias correction, because there is no straightforward
method to distinguish between model bias and observation bias. Therefore, any bias correction method is in
theory capable of removing some of the CO2 (CO, CH4, N2O) signal. The main problem here is that we do
not have many accurate CO2 profile observations to check for model bias, so that we can correct the satellite
observations properly for the observation bias. Especially, at the start of the first GEMS reanalysis, we have no
clear idea of the errors in the starting analysis. These errors will be partly corrected by assimilating the satellite
observations, but systematic differences between the model forecast and the observations will probably remain
for some time. By using independent data we will try to get a feeling for these systematic errors, but this will
likely be problem area.

3.4 Background constraint

The background constraint is a crucial part of the data assimilation system. The background covariance matrix
describes the horizontal and vertical correlations of the errors in the background state. Therefore, any correc-
tion of the background state by an observation will be distributed accordingly as can be seen in Figure 6. The
figure shows the incremental effect of a single ozone observation on the ozone field, both in the horizontal (left
panel) as in the vertical (right panel). The observation not only corrects the initial state at the observation loca-
tion, but also in a 3-dimensional area around the observation. Therefore, if the background error correlations
are wrongly specified, incorrect increments will result.

When trying to specify the background covariance matrix we encounter generally two problems: i) we want
to describe the statistics of the errors in the background, but we do not know what the true state is; ii) the
background covariance matrix is enormous ( � 107 � 107), so we are forced to simplify it. Differences be-
tween 48 and 24 hour forecasts (NMC method, Parrish and Derber, 1992) or an analysis-ensemble method
(Fisher, 2003) are usually used to estimate the background error covariance matrix. Both methods, however,
rely on the availability of enough observations constraining the relevant atmospheric parameters.
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Figure 6: Example of the effect of the specified background error covariances on the ozone increments
when a single observation is assimilated.

For the greenhouse gases we do not have enough observations to generate proper statistics for the covariance
matrix of the full 3-dimensional field. AIRS observations only constrain the mid- and upper troposphere and
the stratosphere in a crude sense, and surface flasks are very sparsely distributed over the globe. We will
therefore try to define a covariance model in which a few parameters can be estimated from observations.
This method, also known as maximum likelihood estimation of covariance parameters, is more extensively
described in Dee and da Silva (1999a,b) and Michalak et al. (2005). Likely covariance parameters to estimate
from observations are the variances themselves and horizontal and vertical correlation lenght scales.

4 Summary

Within the COCO project CO2 has been build into the 4D-Var data assimilation system as a simple column
variable using AIRS observations to estimate the mean mixing ratios. Results are very encouraging, especially
in the tropics. This system is now being extended into a full 4D-Var greenhouse gas data assimilation system
as part of the GEMS project. This is applied research into new territory with its own problem areas that have
been described above. When a working system has been build, it will be able to process observations from
several satellite instruments to provide consistent fields of atmospheric CO2. These 3-dimensional fields can
then be used to improve off-line flux inversions that are currently based on surface flasks only.
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