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The ECMWF Ensemble Prediction System (EPS) has featured extensively in the ECMWF Newsletter, 
including articles assessing the performance of the EPS, plans for EPS development, and applications to 
which the EPS has been used. For example, in ECMWF Newsletter No. 104, trends in EPS probability skill 
scores since 1994 were reviewed by Roberto Buizza. In this issue, the skill of the EPS in forecasting rainfall 
and potential vorticity is discussed by Mark Rodwell.

Despite the fact that the EPS brings additional value to ECWMF’s dissemination products through its 
ability to assess flow-dependent weather risk, the EPS is a less straightforward tool to use than the more 
traditional deterministic forecast. Not surprisingly, therefore, conceptual questions are sometimes asked 
about the EPS. Here are some examples. What is the relationship between the spread and skill within the 
EPS? If the northern hemisphere RMS error of a typical ensemble member is routinely larger than that of the 
corresponding deterministic forecast, does this imply that this ensemble member is simply a degradation 
of the deterministic forecast? Should we be striving to reduce the RMS error of ensemble members 
relative to the deterministic forecast? Does it make a difference if we ask how many ensemble members 
are better than the deterministic forecast locally, compared with hemispherically? Are the baroclinically-
tilted structures often seen in the EPS initial perturbations consistent with our knowledge of analysis error? 
Perhaps most important of all is this question: Is it really worth running the EPS when ECMWF has such  
a high-quality deterministic forecast?

We try to answer these and other related questions in this article, which, therefore has a more pedagogical 
flavour to others on the EPS which have appeared in the ECMWF Newsletter.

Properties of a perfect Ensemble Prediction System
The scientific basis for ensemble forecasting is encapsulated in Figure 1. In a nonlinear system, here the 
Lorenz (1963) model, but the principle applies to the real atmosphere too, the growth of initial uncertainties 
during a given forecast period is flow dependent. From some initial states the forecast evolution can  
be highly predictable, from other initial states it can be highly unpredictable. The ensemble allows  
us to forecast this flow-dependent predictability.

The illustration in Figure 1 has been formed by integrating the Lorenz equations many times from an 
ensemble of initial states which form a small circle in the nonlinear system’s state space. It is to be  
imagined that the radius of the circle is some measure of the expected amplitude of initial error.
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Figure 1 Scientific basis for ensemble forecasting. In a nonlinear system the growth of initial uncertainty is flow 
dependent – here illustrated with the Lorenz (1963) model. The set of initial conditions (black circle) is located  
in different regions of the attractor in (a), (b) and (c).
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More generally, the data from which the initial state (at time t0) is constructed (e.g. atmospheric 
observations), do not determine this state precisely, but rather determine some probability density  
function ρ(X,t0). Essentially ρ(X,t0) dV denotes the probability at time t0 that the true value XT of the variable  
X (for example, 2-metre temperature at London’s Heathrow airport) lies in the small volume dV in state 
space. The objective of an EPS is to estimate the corresponding forecast probability density function  
ρ(X,t) at forecast time t > t0. In theory, ρ(X,t) can be obtained from ρ(X,t0) by integrating an equation called 
the Liouville equation, or its generalisation, the Fokker-Planck equation. In practice, these equations  
are difficult to solve, even for simple dynamical systems. Instead, and consistent with the methodology 
applied to obtain Figure 1, ρ(X,t) is estimated by multiple sampling of ρ(X,t0) integrating each random  
drawing forwards in time using the given forecast model. Hence, at time t, we can define a perfect  
EPS as an accurate sampling {Xi} 1≤ i ≤N  of the underlying density function ρ(X,t), see Figure 2.

Suppose this procedure is repeated every day, and over a season or so. What mean properties would we 
expect such an EPS to have? One basic quantity of interest is the second moment of the ensemble – the 
spread. When the EPS spread is large, then a deterministic forecast from the most likely estimate of initial 
state (the 4D-Var initial state) will be an unreliable estimate of truth. Conversely, when the EPS spread is 
small, the corresponding deterministic forecast should be reliable. But what relationship between the spread 
of the ensemble and the skill, say, of the ensemble-mean deterministic forecast is desirable? This can be 
answered by considering a perfect EPS, which constitutes a perfect sampling of the underlying probability 
distribution of the true state of the atmosphere, “truth”. In a perfect EPS, the time-mean ensemble spread 
about the ensemble-mean forecast equals the time-mean RMS error of the ensemble-mean forecast  
(using truth as verification) – see Box A.

Figure 2 A schematic showing the evolution of initial probability distributions of truth, to a forecast probability 
distributions of truth, together with an sample of ensemble members (ei) from a perfect EPS. Truth is shown by  
the letter “T”. In the examples shown (a) could represent a forecast of 2-metre Heathrow temperature today, with  
(b) representing a forecast of 2-metre Heathrow temperature from last week, or (a) could represent a forecast of 
2-metre Heathrow temperature today, whilst (b) could represent a forecast of 2-metre Washington temperature today.
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In a perfect ensemble, i.e. a perfect sampling of 
the underlying probability distribution of truth, 
then, over a large number of ensemble forecasts, 
the statistical properties of the true value XT of 
X are identical to the statistical properties of a 
member of the ensemble, Xe (when that member 
is removed from the ensemble). For the following 
analysis of spread and skill, we assume that the 
ensemble size N is sufficiently large that removing 
one member from the ensemble does not materially 
affect the results. Hence, for example, the mean 
squared distance of the J-th member Xe(J) from 
the ensemble mean        is identical to the mean 
squared error of the ensemble mean

                                                                      A1)

where       denotes the expectation value with 
respect to a particular ensemble forecast, and  
… denotes an average over many such ensemble 
forecasts. Equation (A1) holds for any J and it can 
be applied to a scalar quantity X or to a vector X.  
In the latter case, ||…|| should be understood as the 
Root Mean Square (RMS) or the Euclidean norm. 
Taking the expectation       of Equation (A1) yields

                                                                       (A2)

Equation (A2) implies that the time-mean ensemble 
spread about the ensemble-mean forecast, should 
equal the time-mean RMS error of the ensemble-
mean forecast.

AThe relationship between spread and ensemble mean RMS error in a perfect ensemble
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Figure 3 shows that the relation between spread and ensemble-mean RMS error of the ECMWF EPS is 
good – though the ensemble is slightly under-dispersive in terms of 850 hPa temperature, and, in the early 
range, slightly over-dispersive in terms of 500 hPa height. Recently a comparison has been made between 
operational and quasi-operational EPS systems at different weather centres around the world (Buizza et al., 
2005). It was found that the ECMWF system has the best balance between spread and skill, relative to the 
ensemble mean forecast, throughout the forecast range.

What are the implications of a good balance between spread and skill? Figure 2 shows two schematic 
probability distribution functions (PDFs) for a perfect EPS. These could represent forecasts of Heathrow 
temperature today and Heathrow temperature last week, or alternatively forecasts for Heathrow and 
Washington temperatures today. In Figure 2(a), truth is (by chance) close to ensemble member 13 and far 
from ensemble member 45, whilst in Figure 2(b), the converse is (by chance) true. How far is truth from an 
ensemble member on average over many cases? For a perfect EPS it can be shown that the RMS distance 
of an ensemble member from truth, i.e. the RMS error of the ensemble member, is a factor of       larger 
than the RMS distance of the ensemble mean from truth (i.e. the error of the ensemble mean) – see 
Box B. Diagnostics of the ECMWF EPS are qualitatively consistent with this property of a perfect EPS. 
However, this fact has led to some conceptual difficulties amongst users of the EPS. Does it mean that a 
perturbed EPS member is no better than a forecast which has simply been degraded everywhere relative 
to the control? No! For example, the circulation over the Northern Hemisphere as a whole comprises a 
number of quasi-independent synoptic systems – i.e. a forecast PDF is multi-dimensional, with the number 
of dimensions corresponding to the number of effective degrees of freedom in the northern hemisphere 
flow. In a randomly-chosen member from a perfect EPS we can expect some of these synoptic systems 
to be more accurately predicted than the control, but others will not. By contrast, a uniformly-degraded 
deterministic forecast will, by construction, be everywhere worse than the control. The difference is critical.

Figure 3 Spread about ensemble mean (red solid) versus ensemble mean RMS error (black dashed) from the EPS  
for the northern hemisphere extra-tropics. (a) 850 hPa temperature and (b) 500 hPa height. Average over 39 cases 
from July 2004 to June 2005 using model cycle Cy29r2 (operational since 28 June 2005).
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Here, the same notation as in Box A is adopted. In a perfect ensemble, we have

          (Β1)

where the last equality exploits Equation (A2) from Box A and the fact that the term involving the (inner) 
product vanishes because                        = 0. In the short range, where the ensemble mean approximates  
well the unperturbed control forecast we have

          (Β2)

where Xc denotes the forecast value associated with the unperturbed deterministic control forecast.  
Equations (B1) and (B2) imply that the RMS distance between a perturbed ensemble member and truth  
will be, on average,                        larger than the distance between the ensemble mean, and in the short 
range the control, and truth.

BThe relationship between the RMS error of the ensemble mean and the RMS error  
of an ensemble member in a perfect ensemble
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Conversely, if we tried to make each perturbed member more skilful relative to the control, will this make 
a better EPS? No! A simple way to make perturbed members more skilful, is to reduce the amplitude of 
the initial perturbations. Figure 4 shows results from a set of experiments where just this has been done. 
The skill of the resulting EPS has degraded, even though individual perturbed members are, on average, 
more skilful. Confusing? The problem with reducing spread is that the resulting EPS suffers from being tied 
too closely to the “apron strings” of the control. When the control forecast is evolving through an unstable 
and therefore unpredictable part of state space, the resulting EPS will not give a realistic indication of the 
magnitude of this unpredictability and the resulting probabilistic forecast will be over-confident.

Consider a related question: how many times should we expect, in a perfect EPS, a perturbed ensemble 
member to be “better than” the control forecast, in the early range of the forecast when the control is 
essentially the same as the ensemble-mean forecast? The answer to this question depends on how large 
an area we base our assessment of “better than”. For a variable like Heathrow 2-metre temperature (with 
one-dimensional Gaussian PDF), it can be shown (see the Appendix) that a perturbed ensemble member 
has a 35% chance of being closer to truth than the control – hence in a perfect EPS, 35% of ensemble 
members should be “better” than the control. However, recall that if an ensemble member is close to truth 
at Heathrow, it need not be close to truth at Washington, and vice versa. The larger the area over which the 
(deterministic) skill of the ensemble member is validated, i.e. the larger the dimension of the forecast PDF, 
the smaller is the probability that a randomly-chosen member will be more skilful than the control. This 
effect can be quantified by considering a multi-dimensional Gaussian (corresponding to multiple degrees  
of freedom in the flow), and again asking how many times a perturbed ensemble member is “better  
than” the control forecast using RMS error as measure (see Appendix for mathematical details).  
For a 2-dimensional Gaussian 28% of members are better, for a 10-dimensional Gaussian 7%  
of members are better, and for a 100-dimensional Gaussian only 10-4 % of members are better!

Again, this result causes confusion. In a specific ensemble forecast, if we plot the northern hemisphere 
RMS error of the perturbed ensemble members of an ensemble on top of the control or high resolution 
deterministic forecast, then because there are so many degrees of freedom over the whole northern 
hemisphere, it is likely, from the argument above, that none of the members will be more skilful than the 
control. On the other hand, as discussed above, any one perturbed member may well be more skilful than 
the control over a specific region, such as Southern England. This is illustrated by Figure 5 which shows the 
percentage of perturbed forecast with smaller RMS error than the control forecast for regions of various sizes.

The dependence of the number of ensemble members more skilful than the control on the number of 
degrees of freedom in the flow, is a reason why this type of diagnostic is not calculated routinely, and is 
certainly not one of the standard measures of skill against which the EPS is assessed. So, this raises the 
following question: What types of diagnostic are useful for assessing the performance of the EPS against 
the control or the high-resolution forecast? Indeed, can we assess quantitatively whether it really is worth 
running the EPS when ECMWF has such a high-quality deterministic forecast? The following sections 
address this question.
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Figure 4 Area under the Relative Operating Characteristic for positive anomalies of 850 hPa temperature for  
the operational EPS (red solid) and for an experiment in which the amplitude of the EPS perturbations has been 
reduced (black dashed; initial singular vectors by 30%, evolved singular vectors by 50%). Average for the northern 
hemisphere extra-tropics over 29 cases in April/May 2005. Both experiments used model cycle Cy29r2.
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The EPS ensemble mean versus high-resolution deterministic forecast
The simplest product from the EPS is the ensemble-mean forecast. How does this product compare with 
the high-resolution deterministic forecast? In the accompanying article by Mark Rodwell in this Newsletter,  
it can be seen that in terms of 500 hPa height, the ECMWF high-resolution deterministic forecast 
outperforms the EPS ensemble mean in the first few days of the forecast. This is not surprising; in terms 
of 500 hPa height, the EPS ensemble mean is essentially equal to the control forecast in the first couple 
of days of the forecast, and the control forecast is run at a lower resolution than the high-resolution 
deterministic forecast. However, the results are more interesting for variables like precipitation or potential 
vorticity (an intrinsic model variable – i.e. based on wind, pressure and temperature – with a spectrum of 
variability which is more comparable with “sensible weather” than 500 hPa height, at sub-cyclone scales). 
For these variables, the EPS ensemble mean is, on average, virtually as skilful as the high-resolution 
deterministic forecast in the early ranges of the forecast (and more skilful thereafter), despite the EPS being 
run at lower resolution. The reason for this is that fields like precipitation and potential vorticity (unlike 500 
hPa height) have significant partially-unpredictable scales, even in the short range. The nonlinear filtering 
effect of the ensemble mean is effective in removing such unpredictable scales.

EPS versus deterministic forecast for binary decision making
The real value of the EPS over deterministic forecasting lies in decision making particularly for users who 
can quantify their “value at risk”, i.e. the value of assets at risk to specific types of adverse weather event, 
and can take mitigating action at known cost.

Here is an example, which appears facetious, but illustrates the principle well. A colleague once phoned on 
a Monday morning, wanting to know whether or not it was going to rain the coming Saturday evening. He 
said he was having a garden party, and wanted to know whether or not to hire a marquee. He had to decide 
whether or not to hire the marquee in the next couple of hours. It was explained that predicting rainfall 
with certainty, so far ahead and for such a small area (his back garden), was virtually impossible; at best it 
would only be possible to give a probabilistic assessment of whether or not it would rain. What use is that, 
he asked? It was enquired whether the Queen was coming to the party. If the Queen was coming, then the 
marquee should be hired if the probability of rain exceeds 1% (i.e. if any member of the EPS predicts rain). 
On the other hand, if the queen was not coming but the town mayor was, then perhaps the marquee should 
be hired if there is more than a 10% chance of rain. However, if the party was just for friends from the pub, 
then perhaps it was only necessary to hire the marquee if the chance of rain exceeds 70%. 

The value of the EPS against the deterministic control for such binary decision making is assessed routinely 
at ECMWF in the form of Potential Economic Value (Figure 6). Here the x-axis of Figure 6 denotes the user 
cost-loss ratio. We can relate the cost-loss ratio to the probabilistic threshold above. For example, suppose 
the colleague valued his potential knighthood at £50,000; this would be the value at risk if the Queen got 
wet. If hiring the marquee costs £500 (mitigating cost), then it would be appropriate to decide to hire the 
marquee if the probability of rain exceeded C/L=1%, i.e. if just one EPS member forecasts rain. On the other 
hand, the value of local business at risk if the town mayor got wet might only be worth £5,000, in which 
case the relevant cost/loss ratio would only be 10%.
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The colleague responded that neither the queen nor the mayor was coming, but the mother in law was! 
On this basis, he decided he would hire the marquee if the probability of rain exceeded 25%. The EPS 
for Saturday showed the probability of rain was 10%. He didn’t hire the marquee. (It didn’t rain, and the 
colleague was a convert to probability forecasting!)

Realising the true economic value of the EPS requires knowledge of the forecast customers’ specific 
circumstances. Perhaps this will be a key role for the forecaster in the future – a detailed interaction with  
the customer to determine the most appropriate probabilistic thresholds tailored to his or her specific needs.
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Figure 6 Potential economic value for the 
ECMWF EPS control and the EPS itself based  
on six-day forecasts of whether or not it will  
rain (24-hour precipitation exceeding 1 mm, 
August–October 2005, Europe). The potential 
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forecast) and 1 (perfect forecast). For users with 
either low cost/loss ratio, or high cost/loss ratio,  
the control itself has no value for decision making 
(over and above decisions made with knowledge 
of the climatological frequency of rain).

EPS versus deterministic forecasts for weather trading
Not all decisions are simple binary decisions. Consider a simple gambling game – perhaps not so different 
to that played by energy traders – where you are betting on the Heathrow temperature seven days from 
now. Should you just bet on one temperature, or spread your bets across a range of temperatures, e.g.  
in proportion to the EPS-based probability of occurrence? Assume the “casino” you are betting against has 
determined the payout for a correctly-forecast temperature, based on a Gaussian distribution whose mean 
is the ECMWF high-resolution forecast of Heathrow temperature, and whose standard deviation is taken 
from past error statistics of the high-resolution forecast. This is the so-called Weather Roulette problem first 
posed by Leonard Smith (London School of Economics) and Mark Roulston (Pennsylvania State University). 
The gamble starts on the first of January with an initial stake of £1. All the winnings are reinvested. Based  
on day 7 forecasts, Figure 7(a) shows that, after a year, the gambler using the EPS will have made more than 
£1030 against the casino! It turns out that the EPS gambler will win against the casino at all forecast ranges, 
though the payout is largest at about day 6–7.

Suppose the gambler had access to the high-resolution deterministic. Could he improve his strategy by 
combining the high-resolution deterministic forecast with the EPS. Figure 7(b) shows that for lead-times 
up to 4 days, a betting system based on an optimal blend of high-resolution and EPS probabilities leads 
to a positive return when played against odds based solely on the EPS. However, after about day 4 there 
appears little extra value in adding the high-resolution deterministic forecast to the EPS. (Rodwell, 2005, 
discusses the potential impact of adding the high-resolution deterministic forecast to the EPS in terms  
of precipitation.)

Weather Roulette is an example of a validation technique which compares the EPS and deterministic 
forecast in a form where both have been optimally dressed in the form of probability forecasts. It clearly 
demonstrates the value of the EPS throughout the forecast range.
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EPS perturbation methodology
Sometimes it is asked whether the EPS is superior to a simple lagged ensemble comprising some of the 
most recent high-resolution forecasts. It is superior for a number of reasons. Firstly, it is impossible to create 
a probability forecast with any substantial resolution using just five or so members (with more than about 
five members, the lagged members become too unskilful at the effective initial time, to represent analysis 
error). Matters are actually worse than this, since the individual forecasts in a lagged ensemble are partially 
correlated with respect to one another. That is, on average, the error covariances in a lagged ensemble are 
significantly larger than the error covariances between members of the EPS. Figure 8 shows a comparison 
of the EPS with a lagged ensemble comprising the five most recent high-resolution deterministic forecasts. 
Figure 8(a) shows that the percentage of ensemble members better than the control is similar in both cases, 
whilst Figure 8(b) shows that the skill of the EPS is substantially greater than that of the lagged ensemble.  
A Weather Roulette analysis supports this conclusion: the EPS outperforms the simple lagged high-
resolution forecasts.
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recent five high-resolution deterministic forecasts of the 500 hPa height for the northern hemisphere extra-tropics.  
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Characteristic for positive anomalies of 500 hPa height. December–February, 2004/05, 90 cases.
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The initial perturbation strategy for the ECMWF EPS is to draw randomly from an initial Gaussian PDF based 
on (a) the leading initial-time singular vectors of the first 48 hours of the forecast flow, and (b) the evolved 
singular vectors from the previous 48 hours (e.g. Molteni & Palmer, 1993, Barkmeijer et al., 1999). The former 
are rapidly-growing, small-scale perturbations, the latter are weakly-growing, large-scale perturbations.

Figure 9(a) shows a typical initial singular vector as used in the EPS. It has sometimes been questioned whether 
such baroclinically-tilting structures really are a feature of analysis errors. Similarly, the uniqueness of these 
singular vector structures has also been questioned, since they depend on the choice of an initial metric.  
So, can the use of singular vectors for initial EPS perturbations be justified from sound physical principles?
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The natural inner product to use for singular-vector calculations is the analysis error covariance metric, 
since, evolved to forecast time, these singular vectors map directly onto the eigenvectors of the forecast 
error covariance matrix (Ehrendorfer & Tribbia, 1997). Figure 9(a) shows a leading singular vector calculated 
with respect to a total energy inner product. Palmer et al. (1998) argued that such an inner product should 
approximate well the inner product formed from the analysis error covariance metric.

It is now possible to calculate singular vectors using the 4D-Var estimate of the analysis error covariance 
matrix. Figure 9(b) shows the same singular vector as Figure 9(a), but using the analysis error covariance 
metric, rather than the total energy metric. Figure 9(b) is very similar to Figure 9(a), suggesting that the 
EPS perturbations are indeed consistent with the statistics of analysis error. It is interesting to note that the 
structure of these singular vectors is strongly influenced by the presence of the observation term in the total 
analysis error covariance matrix. The role of observations is to constrain large-scale well-observed parts of 
the analysis. Without this constraint, i.e. by not including the observation term in the estimate of the analysis 
error covariance matrix, the leading singular vectors are broader and deeper than they would otherwise  
be – more similar to breeding vectors (Figure 9(c)).
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Figure 9 Example of a singular vector (temperature cross-section at 50°N): (a) based on a total energy inner product, 
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Conclusions
The EPS is a valuable tool for decision making in applications sensitive to weather. Certain properties  
of the EPS have been studied, and some conceptual misunderstandings have been addressed.  
Above all, there can be little doubt that the resources devoted by ECMWF to the EPS are well justified.

On the other hand, there is certainly scope for improving the EPS, and ECMWF will be working with  
partners from the Member States on many aspects of the EPS. Such improvements will include:

• Increase in EPS resolution from T255 L40 to T399 L62;

• Unified ensembles for medium-range and monthly timescales;

• Development of back statistics from latest model cycles to calibrate probabilities;

• Incorporation of moist processes in the extra-tropical singular vector computations;

• Development of stochastic parametrisations to represent model error;

• Use of ensemble data assimilation in place of evolved singular vectors;

• Development of statistical schemes which will allow incorporation of high-resolution  
deterministic forecast into the EPS probability products;

• Comparison of ECMWF EPS against THORPEX grand multi-model ensemble.

In particular, the development of stochastic parameterisation and ensemble data assimilation will lead to 
a more realistic representation of model and initial uncertainties in the tropics, where the current EPS is, 
overall, underdispersive. 

More information about ensemble methods for forecasting predictability can be found in “Predictability  
of Weather and Climate”, edited by Tim Palmer and Renate Hagedorn, which is due to be published  
by Cambridge University Press in 2006. The book addresses predictability from the theoretical to the 
practical points of view, on timescales from days to decades.
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Appendix. Perfect ensembles sampled from Gaussian distributions
This appendix investigates how often a member of an ensemble is better than the control forecast for  
a particular perfect ensemble scenario. This idealized situation is adopted as it permits a semi-analytical 
solution. We assume the following:

• The system and forecasts of it are n-dimensional vectors.

• The control forecast (most likely state) is an unbiased estimate of the true state.

• The error of the control forecast (control-minus-truth) is distributed according to an isotropic  
Gaussian distribution.

• The “ensemble” is given by the same Gaussian distribution. The results that will be discussed are 
independent of ensemble size. The ensemble could consist of any number of members drawn from 
the Gaussian distribution or alternatively one can consider the Gaussian distribution itself as the 
probabilistic forecast.

• Thus, the control-minus-truth differences and the control-minus-ensemble member differences are 
distributed according to the same isotropic Gaussian distribution. Without loss of generality, we can 
assume that the control forecast is zero (otherwise we can discuss everything in terms of differences 
with respect to the control forecast).

• The Euclidean norm will be used to measure the error of a forecast.

Let us start with the one-dimensional case. The Gaussian with standard deviation σ is given by:

The probability of an ensemble member x to be closer to the true state y than the control forecast 0 is given 
by the double integral:

where R denotes the set of real numbers. In this equation, the integral over x yields the probability that  
an ensemble state x is closer to a given true state y than the control. These probabilities are then weighted 
with the probability that y occurs in the outer integral. Numerical evaluation yields ρ1 = 0.35. 

Now, we turn to the n-dimensional case. We consider an isotropic Gaussian distribution. The probability  
that an ensemble member x is closer to truth y in the Euclidean norm than the control forecast 0 can  
be expressed by the 2n-dimensional integral:

where

and where the Euclidean norm is denoted by:

As in the one-dimensional case, ρn is independent of the standard deviation σ. Exploiting the spherical 
symmetry of the Gaussian probability distribution function, the 2n-dimensional integral can be reduced  
to a three-dimensional integral for any n. The latter integral can be evaluated numerically (see the table).  
The results show that as the dimension increases a perturbed forecast is less likely to be better than  
the control forecast. For dimensions larger than 100, the probability drops to values below 10-6.

Probability that the RMSE of a perturbed member is smaller than the RMSE of the control forecast  
for an isotropic Gaussian in n dimensions.

R

R
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