Status and needs for reanalysis: User views

Chemical Transport Modelling

Beatriz Monge-Sanz

University of Leeds, Leeds, UK

With contributions from: Martyn Chipperfield, Bram Bregman, Caroline Forster, Michael Gauss, Bjoern Knudsen, Kirstin Krueger, Mark Lawrence, Bernard Legras, Twan van Noije, Thomas Reddmann, …
Outline

- What are CTMs?
- What are CTMs for?
- Past/present experiences with (re)analyses
 - Long term stratospheric O$_3$ loss
 - Polar O$_3$ loss
 - Strat-Trop Exchange
 - Tropical Tropopause Layer (TTL)
- Requirements for future (re)analysis
What are Chemical Transport Models (CTMs)?

Numerical models
Use prescribed meteorology
Calculate concentrations of species in the atmosphere

- 3D off-line. Eulerian and Lagrangian
- Winds from GCMs or analyses
- Analyses → direct comparison with observations
- Re-analyses → direct comparison with obs into the past
- Reliance on (re)analyses quality → diagnostic tool for analyses
- Longer experience in the stratosphere
What do CTMs investigate?

- Long-term O$_3$ loss last 25 years
- Polar O$_3$ loss

Stratosphere

- Stratospheric ozone
- UV radiation
- CTMs
- Human activity
- Tropospheric chemistry

Extended weather forecasts
What do CTMs investigate?

- Long-term O₃ loss last 25 years
- Polar O₃ loss
- Accurate transport
- Polar Temperatures

CTMs need from reanalyses

Bad news: No existing reanalysis seems to be good enough

Good news: We are on our way → ERA-Interim
What do CTMs investigate?

Troposphere

Stratosphere-Troposphere Exchange

Tropical Tropopause Layer

Tropical convection

What CTMs need:

• Realistic transport
• Certain parameters to make parameterisations in the CTM consistent with those in the meteo. model.
Stratospheric transport

Current (re)analyses (e.g. ERA-40, GEOS-4, UKMO):
- Too strong Brewer-Dobson circulation
- Not enough tropical isolation

Unrealistic distribution of chemical tracers

- CTMs for transport diagnostics: Age of air Trajectories
Age of air: definition

- **Diagnostic** for stratospheric transport, chemistry independent \(\rightarrow\) Assessment of stratospheric analyses and intercomparison of CTMs

- **Age spectrum**: distribution of transit times of an air parcel from a source to a certain location (in the stratosphere)

- **Mean age-of-air**: first moment of age spectrum

\[
\Gamma(x, x_0) = \int_0^\infty t \ G(x, x_0, t) \ dt
\]

- For a **conserved linear tracer**: \(\text{CO}_2, \text{SF}_6\)

\[
\Gamma(x, x_0) = t - \frac{\gamma(x, t)}{\alpha}
\]

\(\alpha\) : mixing ratio trend
Age of air: calculation

Age-of-air → chemistry independent transport diagnostic

Conserved linear tracer → mean-age ("observational")

\[
\Gamma(x, x_0) = t - \frac{\gamma(x, t)}{\alpha}
\]

\(\alpha: mixing\ ratio\ trend\)

- Sparse in-situ measurements (~20km)
- \(\text{CO}_2, \text{SF}_6\)
- MIPAS \(\text{SF}_6\) (G. Stiller, Karlsruhe Univ.)
Age of air: cross-sections

CTMs with ERA-40:
- underestimation
- unrealistic shape

KASIMA

Schematic annual mean mean-age, from (Waugh and Hall, 2002)
Some strategies

- Isentropic vertical coordinate: σ-θ
- Derived vertical velocities: Heating rates
- Use of forecasts

Mean-age @ 20 km

Operational
ERA-40 -24h fc

ERA-40 σ-θ
Heat. rates

model config
forecasts

from (Chipperfield, 2006)
ERA-40

from (Meijer et al., 2004)
UKMO
Some strategies

- Isentropic vertical coordinate: $\sigma-\theta$
- Derived vertical velocities: Heating rates
- Use of forecasts

What if we have better reanalysis?

ERA-Interim
Age of air: TOMCAT

cross sections annual mean 2000

- ERA-40: too young, non-realistic

- UKMO: too young, non-realistic

Schematic annual mean mean-age, from (Waugh and Hall, 2002)

ERA-40: too young, non-realistic

Operations: still young, more realistic

EXP471: oldest, most realistic
Tropical isolation

TOMCAT Trajectories

50-day backwards run: 1st Jan 2001
36,000 parcels: 0° ± 1°
460K ± 5K

From Schoeberl et al., 2003

From Bregman et al., 2006
Ozone distributions

Total ozone in July and Dec 1990

TOMS

REPROBUS

ERA-40

- Too low O$_3$ over tropics
- Too high O$_3$ over poles

Too strong Brewer-Dobson circ.:
- Removes too much from tropics
- Accumulates too much over poles

From F. Lefèvre
Polar Temperatures

- ERA-40 oscillations
- Large differences between analyses

Unrealistic PSC areas → unrealistic polar O₃ loss

Winter 1988/1989

Winter 1963/1964 pre-satellite

from Bjoern Knudsen (DMI)
Polar Temperatures

Polar Temperatures

• ERA-40 too cold
• FUB better than automatised (satellites outweigh radiosonde data)

Comparison with radiosondes T

- ERA-40 too cold
- FUB better than automatised (satellites outweigh radiosonde data)

from Bjoern Knudsen (DMI)
Polar Temperatures -- presatellite

PSC area NH 1963/1964

Comparison with radiosondes T
- ERA-40 too cold
- REAN warm bias
- Neither of them good enough for PSCs

from Bjoern Knudsen (DMI)
Troposphere

STE T. van Noije (KNMI)

TTL Kirstin Krüger (IFM-GEOMAR/AWI)
Stratosphere-Troposphere Exchange

O$_3$ monthly STE fluxes with ERA-40 and OD

from van Noije et al. (2006) (KNMI)
Stratosphere-Troposphere Exchange

Annual total O_3 STE flux with ERA-40 and OD: forecast length

Dependence on forecast range; merged forecasts are indicated by a line connecting begin and end time of the forecast range. Forecasts \rightarrow reduction flux

from van Noije et al. (2006) (KNMI)
Stratosphere-Troposphere Exchange

O$_3$ monthly STE fluxes with ERA-40: satellite observations

Comparison of ERA-40 first-guess fields (thin) and first-guess from ERA-40 run with no satellite radiance observations assimilated during Jan-Mar 1973 (thick)

from van Noije et al. (2006) (KNMI)
Tropical Tropopause Layer

- Trajectories to study water vapour into the stratosphere
- Vertical motion from heating rates to avoid noisy w field
- Compare ERA-40 and ECMWF Operations

\[T_{\text{Min}} \text{ in trajectories} \approx \text{dehydration points of strat. } H_2O \]

from Kirstin Krüger (IFM-GEOMAR/AWI)
Tropical Tropopause Layer

T_{Min} in trajectories \approx dehydration points of strat. H_2O

T_{Min} in trajectories \approx dehydration points of strat. H_2O

→ Lower T_{Min} in op ECMWF (cold bias in tropical stratosp?)

from Kirstin Krüger (IFM-GEOMAR/AWI)
Cold bias in TTL reduced in new T799/L91

From Kirstin Krüger (IFM-GEOMAR/AWI)
Requirements for future reanalysis

Improvements needed

- Keep improving Brewer-Dobson → for long-term studies
- Improve T over the poles (more radiosondes) → PSCs
- STE large uncertainties → constrain analyses
- Less noise in vertical velocity?
- Improve vertical motion and T → positive impact on H₂O vapour
- 3h winds?
Requirements for future reanalysis

Data availability

- Access to data
 - NCEP: ok
 - ECMWF: would gain many “CTM clients” if easier access and NetCDF format for certain key fields

- Archived quantities:
 - Heating rates → consistency vertical/horizontal motion
 - Eta-dot → consistency vertical/horiz motion
 - Convective parameters → consistency of parametr.

Archived for ERA-40 but not operationally

BUT ERA-40 STOPPED IN 2002 !!!
Requirements for future reanalysis

Updates for trend studies

- Need also the most recent data
- Same model version is needed
- ERA-40 updates every 6 months?
- Example: Cl$_y$ decrease, T and ozone (SLIMCAT)
Trend studies: O_3, T, Cl_y @ 40 km (SLIMCAT)

From M. Chipperfield

- Figure 1: (35N-60N) ozone @ 40 km

- Figure 2: (60S-35S) ozone @ 40 km

Key Points

- ERA-40 updates every 6 months?
- Same model version is needed?
- **A** Detectable recovery?
- **B** - constant halogen

Notes:

- **SLIMCAT(Run A)**
- **SLIMCAT(Run B)**
- **SLIMCAT(Run C)**

Operational Status:

- **ERA40**
Summary

- CTMs treat key atmospheric science issues
- CTMs and (re)analyses: two-way road
 - CTMs need accurate (re)analyses
 - CTMs are helping ECMWF to spot problems (esp. in stratosphere)

...so let’s keep on working!
Acknowledgements

Steve Arnold, Paul Berrisford, Wuhu Feng, John Methven, Adrian Simmons, Sakari Uppala ...
THANK YOU!