Scientific Recommendations Land-Atmosphere:
Wildfires / Biomass Burning

J.W. Kaiser

contributions from:
R. Engelen, J.-M. Gregoire, A. Hollingsworth, M.G. Schultz, S. Serrar,
M. Sofiev, C. Textor
Outline

- Introduction
- GEMS / GEOLAND Requirements
- Available Data
- Recommendation
- Summary
INTRODUCTION
What is Biomass Burning (BB)?

- **biomass:**
 - green vegetation, wood, litter, soil organic matter, peat
- **ignition:**
 - lightning or human activity
- **visible from space by thermal radiation or burnt area**
 - gas flares etc. excluded from observations
- **function:**
 - natural cycle of ecosystem
 - deforestation
 - agriculture
 - accident
 - ...
- **a.k.a. “vegetation fires”, “wildfires”**
Annual Fire Emissions, averaged over 1997–2004

[Van der Werf et al., ACPD 2006]
Significance for Land Monitoring

- Wildfires are an important sink mechanism for the terrestrial carbon pools in the global carbon cycle.
 - wildfire emissions, typical global values: 1.5 – 4 Gt C / year
 - fossil fuel emissions of Europe + North America: 3 Gt C / year

- Wildfire behaviour characterises land cover types with repeated fire events.
 - typical fire repeat period
 - typical fire intensity
 - typical fire seasonality
 - …

- Wildfires can change the land cover type reversibly
 - tropical deforestation
 - …
Atmosphere: Biomass Burning (BB) Emissions ...

AIR QUALITY:
- ... can dominate local and regional air quality with poisonous smoke
- ... can elevate background of atmospheric pollutant after long range transport [Stohl et al. 2001, Forster et al. 2001, Andreae et al. 2001]

POLLUTION CONTROL:
- ... significantly contributes to global budgets of several gases
 - Kyoto, CLRTAP, ...

WEATHER: (absorbing aerosols)
- ... influences the radiative energy budget [Konzelmann et al., JGR 1996]
- ... provides cloud condensation nuclei [Andreae et al., Science 2004]
- Heat release accelerates deep convection. [Damoah et al., ACP 2006]

REMOTE SENSING:
- ... affects essential a priori information for remote sensing (AOD, profiles)

CHALLENGE:
- ... are highly variable on all time scales from hours to decades
GMES REQUIREMENTS
GEMS/GEOLAND BB Product Requirements

<table>
<thead>
<tr>
<th></th>
<th>GEMS</th>
<th>GEOLAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTS</td>
<td>amounts of trace gases (CO2, CH4, CO, O3, NO2, SO2,...) and aerosols emitted</td>
<td>amount of biomass burnt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type of vegetation burnt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>date and location of fire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>date and location of fire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>injection height profiles</td>
</tr>
<tr>
<td>COVERAGE</td>
<td>spatial:</td>
<td>global, consistent</td>
</tr>
<tr>
<td></td>
<td>temporal: > 8 years</td>
<td>> 10 years, consistently</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>spatial: ≈ 25 km</td>
<td>(1 km for GEOLAND-2)</td>
</tr>
<tr>
<td></td>
<td>temporal: 1-6 hours</td>
<td>1 day</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>near-real time</td>
<td>retrospectively</td>
</tr>
</tbody>
</table>

[Kaiser et al. 2006]
AVAILABLE DATA
Two types of fire products accessible from Earth obs. systems

- **ACTIVE FIRE product**
 - Active fire
 - Hot spot
 - Fire pixel
 - Fire count

- **BURNT AREA product**
 - Burnt area
 - Burnt pixel
 - Burnt scar

OBSERVATIONS

- **Area burnt**
 - spectrally flat
 - BRDF flat
 - dark
 - only after fire

- **Fire front**
 - thermal emission, MIR
 - only during fire
Observation System: Current Fire Products

Active Fire Products (no quantitative information)

<table>
<thead>
<tr>
<th>NAME</th>
<th>REFERENCE</th>
<th>SENSOR(S)</th>
<th>COVERAGE</th>
<th>RESOLUTION</th>
<th>AVAILABILITY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS active fire</td>
<td>http://modis-fire.umd.edu/products.asp</td>
<td>Aqua/Terra-MODIS</td>
<td>global</td>
<td>2001 – present</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>World Fire Atlas</td>
<td>http://dup.esrin.esa.int/onia/wfa</td>
<td>ERS2-ATSR2, Envisat-AATSR</td>
<td>global</td>
<td>1995 - present</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>Active Fire Monitoring (FIR)</td>
<td>http://www.eumetsat.int/idcplg?idcService=SS_GET_PAGE&nodeid=522</td>
<td>Meteosat-SEVIRI</td>
<td>Africa & Europe</td>
<td>3 km</td>
<td>15 min</td>
<td>NRT</td>
</tr>
<tr>
<td>IGBP-GFP</td>
<td>http://www-temp.jrc.it/</td>
<td>NOAA-AVHRR</td>
<td>global</td>
<td>1992-1993</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>TRMM</td>
<td>http://earthobservatory.nasa.gov/Observatory/Datasets/fires.trmm.html</td>
<td>TRMM-VIRS</td>
<td>40°N - 40°S</td>
<td>1988-2002</td>
<td>2 km / 0.5° (sensor/product)</td>
<td>1 month</td>
</tr>
</tbody>
</table>

Active Fire Products with quantitative information

<table>
<thead>
<tr>
<th>NAME</th>
<th>REFERENCE</th>
<th>SENSOR(S)</th>
<th>COVERAGE</th>
<th>RESOLUTION</th>
<th>AVAILABILITY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF_ABBA, Dozier method</td>
<td>http://climss.ssec.wisc.edu/goes/burn/detection.html</td>
<td>GOES-E/W</td>
<td>N/S America</td>
<td>1995-present</td>
<td>4 km</td>
<td>30 min</td>
</tr>
<tr>
<td>MODIS FRP</td>
<td>http://modis-fire.umd.edu/products.asp</td>
<td>MODIS</td>
<td>global</td>
<td>2001-present</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>global FRP from GEOs</td>
<td>M. Wooster, private comm.</td>
<td>several GEO satellites</td>
<td>global</td>
<td>4 km</td>
<td>30 min</td>
<td>NRT</td>
</tr>
</tbody>
</table>

Burnt Area Products

<table>
<thead>
<tr>
<th>NAME</th>
<th>REFERENCE</th>
<th>SENSOR(S)</th>
<th>COVERAGE</th>
<th>RESOLUTION</th>
<th>AVAILABILITY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBSCAR</td>
<td>http://dup.esrin.esa.int/onia/projects/summaryg24.asp</td>
<td>ERS2-ATSR2</td>
<td>global</td>
<td>2000</td>
<td>1 km</td>
<td>1 month</td>
</tr>
<tr>
<td>MODIS Fire Affected Area</td>
<td>http://modis-fire.umd.edu/products.asp#8</td>
<td>Aqua/Terra-MODIS</td>
<td>global</td>
<td>2001-present</td>
<td>500 m</td>
<td>1 day</td>
</tr>
<tr>
<td>Global Daily Burnt Area (GDBAve1)</td>
<td>http://www-temp.jrc.it/fire/gba2000</td>
<td>SPOT-VGT</td>
<td>global</td>
<td>2000-2005</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>Burnt Area for GEOLAND (BAG)</td>
<td>http://www-temp.jrc.it/fire/Restricted access (GEOLAND)</td>
<td>SPOT-VGT</td>
<td>Africa & Eurasia</td>
<td>1988-2003</td>
<td>1 km</td>
<td>10 days</td>
</tr>
<tr>
<td>VGT4Africa</td>
<td>http://www-temp.jrc.it/fire</td>
<td>SPOT-VGT</td>
<td>global</td>
<td>2005-present</td>
<td>1 km</td>
<td>1 day</td>
</tr>
<tr>
<td>GLOBCARBON</td>
<td>http://dup.esrin.esa.int/projects/summaryp43.asp</td>
<td>ERS2-ATSR2, Envisat-AATSR, Envisat-MERIS, SPOT-VGT</td>
<td>global</td>
<td>1988-2007</td>
<td>8 km</td>
<td>1 month</td>
</tr>
</tbody>
</table>
OBSERVATIONS: Calculating Emission Amounts

- **traditional:**
 - Fire Radiative Power (FRP):
 - $M(X) = FRP \times \text{time} \times \text{scaling factor} \times \text{emission factor}(X)$

- **Globe:** ~ 400 millions hectares burnt in 2000
- **Med. Basin:** ~ 500000 hectares
- **Dry tropical grass savanna:** ~ 2 tons/hectare
- **Moist tropical savanna:** ~ 10 tons/hectare
- **Boreal forest:** ~ 20 tons/hectare
- **Moist tropical forest:** ~ 40 tons/hectare

 - ~ 25% forest → ~ 80% savanna
 - Woodland & forests
 - ~ 1600 g CO$_2$ / kg biomass
 - Grasslands
 - ~ 1700 g CO$_2$ / kg biomass

- Fuel: T. ha$^{-1}$

- Area burnt per vegetation type: ha

- "pixels" burnt per vegetation type

- OBSERVATIONS: Calculating Emission Amounts
Current NRT Fire Emission Monitoring Systems

- **NRL/NAAPS aerosol model in the FLAMBE project**
 - Additionally assimilates the MODIS active fire product
 - Delivers global aerosol emissions

- **RAMS model at INPE/CPTEC**
 - Assimilation of WF_ABBA product from GEOS satellites
 - Delivers CO and aerosol emissions over the Americas

Adapted from E. Prins
Global Fire Activities in GEMS @ ECMWF

- CO2 and aerosol fire emission from inventory GFEDv2
 [van der Werf et al., ACP 2006]
 - hot spot fire observations from satellite-borne MODIS
 - available fuel load from CASA vegetation model
 - no near-real time availability
 - time resolution: 8 days
 - Can be used as dummy for future fire monitoring system in reanalyses.

- “global” GEO FRP
 - participation in 2 new projects as user
Fire CO2 Emission on 20 Aug 2003 [g / m2 / day] (GFEDv2_8day, re-gridded to T159)
CO2 Model Field with Fires @ 500hPa [ppm]
Excess CO2 due to Fires [ppm]

Wednesday 20 August 2003 00UTC ECMWF Forecast t+12 VT: Wednesday 20 August 2003 12UTC Model Level 40 **Carbon Dioxide
Excess CO2 due to Fires II [ppm]

Cross section of co2 20030820 00 step 12 Expver esvu
No fire emissions

With fire emissions

(satellite data assimilation by R. Engelen, ECMWF)
RECOMMENDATION:
Global Fire Assimilation System
(HALO-GFAS)
Benefits of Near-real-Time fire information for GEMS & GEOLAND

- GEMS would benefit from near-real time fire information, but currently uses climatological fire information.
- Biosphere carbon monitoring in GEOLAND-2 would benefit from an accurate burnt biomass product, but the existing products have limited accuracy.
- A future service, HALO-GFAS, could use complementary satellite fire observations, plus a fire model, to provide:
 - Emissions
 - Profiles of emission injection heights
 - Pyro-change in biomass
- GEMS would benefit through more realistic and timely fire emission information.
- GEOLAND would benefit through estimates of change in carbon stocks.
- GFAS would benefit from fuel estimates provided by GEOLAND-2 as experience develops.
HALO-GFAS serves GEMS and GEOLAND.

- GEMS
 - fire emissions
 - injection heights
- GEOLAND
 - available fuel load
 - land cover type
 - pyro-changes in carbon stocks
- HALO-GFAS
 - fire observations
A GFAS is needed to provide the required fire input for the GMES land and atmosphere monitoring systems.

- Assimilation of the best available satellite products into a numerical model of the global fire activity including information on atmospheric conditions and land cover.
Additional HALO-GFAS Benefits

- single, consistent, operational fire processing for all GMES systems
 - global and regional
- GEOLAND will benefit from improved land cover characterisation and land cover change detection.
- Numerical Weather Prediction will benefit from fire heat release product for driving the convection.
- A multi-parameter inversion of the observed fire plumes will yield
 - improved fire emission fluxes (GEMS)
 - information on the fire properties
 - improvement of the fire model to be used by
 - HALO-GFAS
 - climate models

- Collaboration of space agencies, satellite retrieval experts, biosphere & atmosphere modellers, and other users
- “Expression of Interest” formulated (March 2006)
 - supported by 30+ scientist from 30+ institutions in Europe

- Funding needed!
SUMMARY

- GEOLAND-2, GEMS/GAS, will need global Biomass Burning modelling in near-real time and consistent multi-year time series.

- No single suitable EO product or monitoring service is available.

- We recommend to develop a Global Fire Assimilation System (HALO-GFAS) to serve the GMES requirements. It should combine:
 - fire EO products
 - meteorological conditions
 - land cover: ecosystem, biomass incl. all carbon stocks
 - numerical model of fire activity

- The recommended HALO-GFAS is widely supported in the European science community.

- HALO-GFAS needs funding and a host.
MORE INFORMATION

- www.ecmwf.int/research/EU_projects/HALO
- www.ecmwf.int/research/EU_projects/GEMS
- www.gmes-geoland.info
- j.kaiser@ecmwf.int

ACKNOWLEDGMENTS

This work has been funded by the European Commission through the FP6 projects HALO, GEMS, and GEOLAND.
SCIENCE DISCUSSION
Issues in implementing/developing MERSEA, GEOLAND, GEMS in the period 2008-2013

- **OCEAN**
 - Current Ocean-Atmosphere set-up looks OK for 2008-2013
 - Ocean-Land issues look difficult
 - little can be done before 2013

- **LAND-ATMOSPHERE**
 - The main issue is how to quantify better the land-atmosphere interactions
 - biomass exchange of H2O, CO2, CH4 (GEOLAND-2)
 - Burnt biomass & emissions (GFAS)

- **GEOLAND-2**
 - Will assimilate satellite data on LAI, fAPAR,..,
 - either online in the IFS, or offline from the IFS
 - Will improve C-TESSEL through extensive validation
 - Will generate improved estimates of soil organic matter and forest biomass through modelling
 - Could generate surface flux estimates offline from IFS, from several SVATS including ORCHIDEE
 - GFAS will use biomass estimates and satellite data to provide
 - improved estimates of burnt biomass

- **GEMS/GAS** can use GEOLAND-2 products in several ways
 - Use C-TESSEL inline in IFS, and assimilate LAI data
 - Use offline GEOLAND-2 fluxes as additional information sources in an ensemble of synthesis inversions
 - The best utilisation can only be determined by experimentation

- GFAS needs funding and a host.