Tuning ECMWF's RAPS9 benchmark for Intel® platforms

N. Panov

Intel Corp.,
pr. ak. Lavrentieva 6/1, Novosibirsk, Russia, 630090
nikita.v.panov@intel.com
Plan

- Porting steps
- Tuning efforts
- Scalability
- Future works
Notations and abbreviations

- Woodcrest processor – Dual Core Intel® Xeon® Processor model 5160
- ppn – processes per node (the number of cores used on a node)
- MVAPICH – an MPI implementation from the Ohio State University
Hardware and software

256 nodes **Woodcrest**, 2 sockets / 2 cores each, 3.0 GHz; 4 MB L2; 8GB RAM; Infiniband Interconnection

Red Hat Enterprise Linux 3.0.
Intel® Fortran and C compilers v9.1 for Linux.
Intel® MPI 2.0, MVAPICH-0.9.7
Porting efforts

- We ported ECMWF RAPS9 both on Itanium®2 and Xeon® processors
- We made 37 changes in makefiles and scripts
- There are eight modifications in the source codes
 - $RAPS9/src/ec/source/signal_trap.c
 - $RAPS9/src/dummy/src/errtra.F
 - $RAPS9/src/ifsaux/support/envsub.F90
 - $RAPS9/src/ifs/parallel/slcomm2a.F90
- Adapted the sources to use Intel® MKL (Math Kernel Library), continue more integration
- We were able to run forecast models T21A, T21R, T399, T511, T799 and 4D-VAR T159 case on both platforms
• **Intel® Compilers** — specific optimizations for Intel processors.
• **VTune™** — Intel® Performance Analyzer. It makes application performance tuning easier with a graphical user interface.
• **Intel® Trace Collector & Analyzer.** The tool allows analyzing and optimizing high-performance applications on clusters of Intel® processor-based systems.
• **Intel® Math Kernel Library** - highly optimized, thread-safe math routines for maximum performance.
Intel® Compilers Features

Efficiency:
Inherent ability to highly optimize codes for all Intel processors

Ease of Use:
Automatic optimization features make it easier to obtain highly optimized target code

Intel® Premier Support:
• training
• best known methods
• problem fixes & workarounds

Intel® compilers use:
- Speculative memory accesses
- Advanced branch prediction
- Software pipelining for Intel® Itanium®
- Specific optimization for Woodcrest
Tuning efforts

benefit from compiler (T399, 32 cores, -O3)

<table>
<thead>
<tr>
<th>compiler's versions</th>
<th>8.0</th>
<th>8.1</th>
<th>9.0</th>
<th>9.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>-7%</td>
<td></td>
<td>+7%</td>
<td>+9%</td>
</tr>
</tbody>
</table>

speedup
Tuning efforts

MKL speedup T511, 64 cores, ppn=2

Optimized run means aggressive compiler’s options, good decomposition and minor code changes.

- Without MKL: 20%
- With MKL: 5%
Scaling

Dual-Core Intel® Xeon® 5160 processor, 2-socket sys., 3.0GHz, 4MB L2 cache, 8GB Memory
Scaling

T799 scaling (O3, ppn=2)

- Dual-Core Intel® Xeon® 5160 processor, 2-socket sys., 3.0GHz, 4MB L2 cache, 8GB Memory
T399 CPU-time as percent of total

Dual-Core Intel® Xeon® 5160 processor, 2-socket sys., 3.0GHz, 4MB L2 cache, 8GB Memory
T511 CPU-time as percent of total

T511, 16 cores, ppn=4

T511, 120 cores, ppn=4

Dual-Core Intel® Xeon® 5160 processor, 2-socket sys., 3.0GHz, 4MB L2 cache, 8GB Memory
Benefits of Hybrid optimization

Dual-Core Intel® Xeon® 5160 processor, 2-socket sys., 3.0GHz, 4MB L2 cache, 8GB Memory
4D-Var T159 case

<table>
<thead>
<tr>
<th>4D-Var T159 case, O3, 32 cores, ppn=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifstraj_0</td>
</tr>
<tr>
<td>ifstmin_0</td>
</tr>
<tr>
<td>ifstraj_1</td>
</tr>
<tr>
<td>ifstmin_1</td>
</tr>
<tr>
<td>ifstraj_2</td>
</tr>
</tbody>
</table>
Conclusions:

- ECMWF IFS RAPS ported on Altix and Woodcrest clusters.
- All benchmarks passed validation on both systems.
- Running benchmarks on Intel’s platforms showed high efficiency of the processor both in computations and scalability.
- There is a number of hot-spots and bottle necks that have not be processed yet.
- We are going to explore more intensively Intel® MKL for benchmark optimization: to use not only its vectorized math functions but more complex routines and solvers.
Future works

• Compiler optimizations (switches, directives, …)
• Optimization of MPI collaborations
• Using more Intel MKL in the code (FFT, solvers, …)
• Tuning the code
Backup
Scaling

T399, O3, 32 cores

T399, O3, 64 cores

T399, O3, 16 cores

T399 scaling

O3

cores
Useful Intel® Compiler Options for Woodcrest

- **-O2** Turns on default optimizations for speed

- **-O3** Enables -O2 optimization level and performs more aggressive optimizations, in particular, loop transformations

- **-ip/ipo** Enables single-/multi-file interprocedural optimizations

- **-no-prec-div, -no-prec-sqrt** Enable use of faster but slightly less accurate algorithms for division and square root (it may affect floating-point accuracy)

- **-xT** Enables use of specific optimization for Woodcrest

- **-unroll0** Disables unrolling the loops in the file
Profiling with Intel® Performance Analyzer VTune™

Performs exhaustive data collection

Has multiple useful display options that help a developer quickly locate hotspot parts of the code and determine the strategy of performance improvement

- Multiple data views
- Very intuitive user interface
- Easy switching to assembly view and assembly instruction events