

### WP\_RAQ\_4.1 Forecast Evaluation

Paul Agnew



#### **Overview**

'Define common skill scores for air quality forecasts and tools for evaluating high resolution forecasts'

#### **Deliverables**

- Report on skill score characterisation for RAQ fore/hind casts
- Skill score software to compare model output and surface observations



- Utilise existing verification measures used by centres operating operational forecasts
- Literature review of alternative methodologies
- Selection of performance metrics for
  - Chemical species concentrations
  - Impact on human health
  - Crop damage indices
- Recommendations in report

#### Example of existing verification - EURAD



© Crown copyright 2005

#### Example of existing verification – Prev'Air





| Scores on the ozone peak |                           |                        |                       |  |
|--------------------------|---------------------------|------------------------|-----------------------|--|
|                          | Lag of<br>the<br>forecast | Rural stations         | Suburban<br>stations  |  |
| Observed mean (µg/m3)    | D - 1                     | 67.3<br>(# Obs.: 2615) | 61.7<br>(# Obs.:5167) |  |
|                          | D + 0                     | 67.3<br>(# Obs: 2615)  | 61.7<br>(# Obs.:5167) |  |
|                          | D + 1                     | 67.2<br>(# Obs.: 2570) | 61.6<br>(# Obs.:5075) |  |
|                          | D + 2                     | 67.3<br>(# Obs.: 2522) | 61.5<br>(# Obs.:4980) |  |
| Simulated mean (µg/m3)   | D - 1                     | 75.8                   | 73.1                  |  |
|                          | D+0                       | 76.0                   | 73.4                  |  |
|                          | D+1                       | 76.2                   | 73.6                  |  |
|                          | D + 2                     | 75.8                   | 73.1                  |  |
| Normalized Bias (%)      | D - 1                     | 23.4                   | 33.9                  |  |
|                          | D + 0                     | 24.0                   | 35.0                  |  |
|                          | D + 1                     | 25.2                   | 36.1                  |  |
|                          | D + 2                     | 24.6                   | 35.4                  |  |
| NMSE (%)                 | <b>D</b> - 1              | 65.9                   | 82.8                  |  |
|                          | D + 0                     | 67.5                   | 87.8                  |  |
|                          | D+1                       | 69.5                   | 90.7                  |  |
|                          | D + 2                     | 68.7                   | 89.4                  |  |
| Correlation              | <b>D</b> - 1              | 0.73                   | 0.71                  |  |
|                          | D + 0                     | 0.72                   | 0.70                  |  |
|                          | D+1                       | 0.72                   | 0.70                  |  |
|                          | D + 2                     | 0.69                   | 0.68                  |  |
| E20% (%)                 | D - 1                     | 63.                    | 53.                   |  |
|                          | D + 0                     | 63.                    | 53.                   |  |
|                          | D+1                       | 63.                    |                       |  |
|                          | D + 2                     | 60.                    | 51.                   |  |

EUTROPH MONITOR

## Example of existing verification – Prev'Air time series





#### Requirements

- Routine evaluation of forecasts c.f. observations
  - (N)RMS error, bias and correlation take into account all forecasts and observations, across the range of values
  - Sensitive to model resolution: 'smoother' models will have better scores overall but may underforecast exceedance events
- Skill scores focussed on threshold exceedance events



- Normalised RMSE
- Bias
- Correlation
- These fundamental verification statistics present an important summary of model performance
- •How best to display this information?

#### **Taylor Diagrams**



- Summarises basic verification statistics, comparing forecast to reference fields
  - Correlation
  - Pattern NRMSE
- Use to compare a number of different models
  - Easy visual interpretation





- Requirement: a single statistic indicating the relative skill of each model in forecasting threshold exceedences
- Basis: 2x2 contingency table
  - ∎a Hit
  - ■b False alarm
  - ■c Miss
  - d Correct rejection
  - ■n=a+b+c+d total no. events

|          |     | Events | Observed |
|----------|-----|--------|----------|
|          |     | Yes    | No       |
| Events   | Yes | а      | b        |
| Forecast | No  | С      | d        |

#### Range of Skill Scores



- A range of indicators traditionally developed for meteorological forecasts:
  - Proportion Correct, Heidke Skill Score, Gilbert SS, Peirce (Kuipers) SS etc.
- Require à Skill Score which is:
  - Simple to calculate and interpret
  - Not sensitive to the thresholds chosen
  - Not sensitive to the 'base rate'
  - Robust not easily 'hedged'
  - Can be tested for significance if required
- The 'Odds Ratio' meets these requirements



'Odds' defined as

ratio of probability that event occurs to probability that event does not occur

- Odds Ratio: forecast skill can be judged by comparing odds of good forecast (hit) to odds of bad forecast (false alarm)
- Easily calculated from contingency table
- Depends solely on the conditional joint probabilities: independent of any bias between observations and forecasts



- A skill score can be derived by a simple transformation: ORSS=(OR-1)/(OR+1)
  - This mapping produces a skill score in the range -1 to +1
- When ORSS=-1 forecasts and observations are independent
- Providing number of forecasts is statistically significant, ORSS approaching +1 indicates a skillful forecast



 Valuable to probe to the differing levels of skill in models at different scales

 Invoke methods of scale decomposition: increasingly used in diagnosing precipitation forecast performance



Source: Marion Mittermaier, derived from Casati (2004)

#### An intensity-scale technique using wavelets (Marion Mittermaier – Met Office 2005)



- Wavelets are locally defined real functions characterised by a **location** and a **spatial scale**.
- Any real function can be expressed as a linear combination of wavelets, i.e. as a sum of components with different spatial scales.
- Wavelet transforms deal with discontinuities better than Fourier transforms do



- Technique is valuable as a *detailed* diagnostic for probing the scale at which models exhibit/fail to exhibit skill
- Requires field to verify against (in precip. typically provided by radar imagery)
- Not yet a sufficiently mature methodology for use as a routine indicator of comparative forecast skill



#### •For O<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>, PM10, CO

- Verify against station data: forecast field data interpolated to station point
- Stratification by
  - Lead time (24,48,72 Hour)
  - Type of site (urban vs rural)
- Taylor Diagrams to summarise verification of daily fields (00Z and 12Z)
- •NRMSE, Bias, Correlation time series for each partner model – assess on-going performance
- Baseline comparison: 24 hour persistence forecast

# Proposed Verification: Skill score

- Odds Ratio Skill Score based on contingency table for forecast/observed exceedence of information and warning threshold at observation sites
  - Which species? All species?
- Sum individual ORSS over all observation sites and normalise
- Display time series for each partner model

#### Implementation: Verification Software



- New tools developed using 'MetPy'
  - User-friendly scripting language
  - Full functionality via numerical/statistical libraries
  - Straight-forward publishing of verification measures on GEMS RAQ web pages
- Potential for partners to develop tailored verification measures, running MetPy on ecgate – interest?



```
compute(
      param = Z_{r}
       levtype = pl,
       levelist = (1000, 500, 100),
       score = (ancf,ref),
       steps = StepSequence(12,240,12),
      area = ('europe', 'north hemisphere'),
       forecast = forecast (
       persistence = persistence(
       analysis = analysis (
              expver = `0001',
              date = DateSequence(20040101,20040131),
       )
)
```

#### **Verification Implementation: Requirement**

#### Technical specification document

- Summarising required verification metrics
- Stratification of data
- Structure of web pages

#### **Report Outline**

- Introduction
- Review existing procedures (incl. questionnaires)
- Results of literature review
- Review of impact metrics
  - Human health
  - Crop damage
- Issues related to observation sites
- City level forecast issues
- Recommendations