

Discussion paper on injection height of fire emission

M.Sofiev, J.Nikmo Finnish Meteorological Institute

Content

- Injection height assessment by means of plume-rise models
- Example of BUO-FMI plume computations
- Input data needed for the assessments
- Possible sources of information in fire satellite retrievals
- Recommendations

Injection height assessment

Counter-rotating **Basic terms** \bullet vortex pair Jet shear-layer vortices Crossflow 3 Horseshow vortices Wake vortices Wall

Injection height assessment (2)

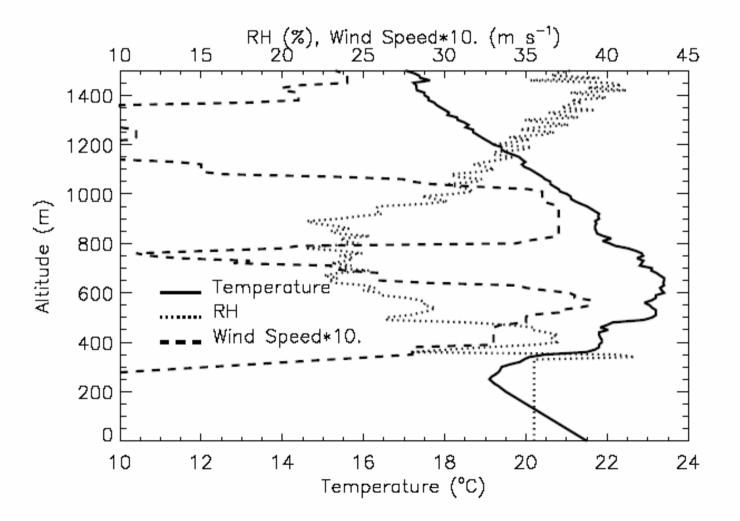
- Mathematically, the plume rise process is described by a set of partial differential equations
- Numerically, models can be grouped as following
 - Straightforward solution of the thermodynamic equations
 - Solution of the Navier-Stokes equation
 - Solution of basic conservation equations for mass, moment, enthalpy, etc.
 - Search for an equilibrium between the buoyancy and drag forces
 - Application of analytical solutions of the above eqs for some idealized conditions (e.g. Briggs formula)

Injection height assessment (3)

- To our knowledge, NONE of currently existing plume rise models was specifically developed for forest fires
- Specifics of the wild-land fires plume height evaluation
 - distributed buoyant source: much wider hot area than in case of industrial fires or volcanoes (standard sources for plume-rise models)
 - complicated, time-dependent and largely unknown shape of hot area
 - plume elevation may strongly depend on the wind direction vs burning area extension inter-action
 - strongly time-dependent release intensity with limited information on its development
 - very limited, if any, information on details of the release: heat released at a particular time, fumes temperature, initial velocity, etc.

Typical input data for a plume-rise model

- Meteorological data
 - wind profile
 - temperature profile
 - > often: integrated boundary layer characteristics
 - rare: humidity profile
- Release specification
 - total released mass
 - initial temperature of the emitted mass
 - released heat flux
 - horizontal size of the emitting area
 - initial velocity of the emitted mass



Evaluation of the BUO-FMI plume model

- Objectives:
 - Evaluate general applicability of comparatively sophisticated plume-evaluation model to wild-land fires
 - List necessary model improvements
 - Find out the most important parameters of the fires to be retrieved
 - > Find a way to get the key fire parameters from satellite data
 - Suggest cheap methodology for making-up the secondaryimportance parameters
- Methodology
 - Simulation of controlled experiments described in literature
 - > Analysis of available and emerging satellite fire retrievals

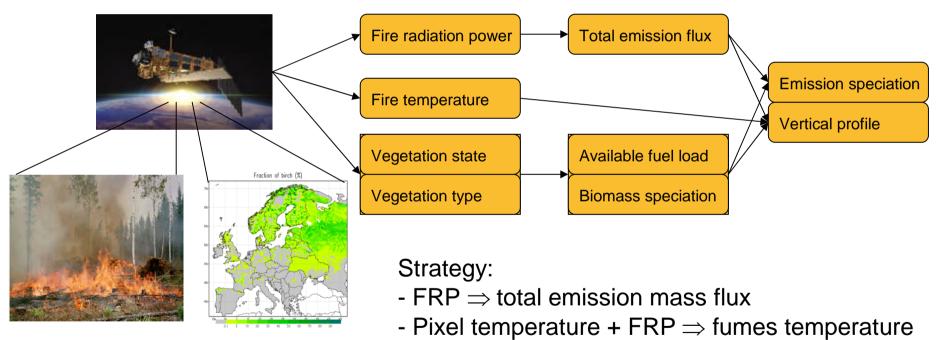
A validation experiment: FMI BUOYANT model

Results of BUOYANT and other models

<i>T</i> (°C)	<i>q</i> (kg s ⁻	z_{h} (m)		x_{h} (m)		$t_{h}(\mathbf{s})$
	¹)	BUOYANT	BUO-FMI	BUOYANT	BUO-FMI	BUO-FMI
500	6250	918	378	404	48	28
600	5170	686	386	121	38	22
700	4410	631	392	67	28	17

ERA-40 meteorological data

<i>T</i> (°C)	<i>q</i> (kg s ⁻ 1)	z _h (m) BUO-FMI	x _h (m) BUO-FM	fI	t _h (s) BUO-FMI	
500	6250	626	484		112	
600	5170	680	372		86	
700	4410	761	270		62	
observation (Kaufmann et al., 1996)			< 1300	-	-	


First conclusions and work to do

- Small-to-mid-size fires can be well represented with BUO-FMI as well as by other sufficiently sophisticated plumerise models
 - > pre-cooked formulae are likely to fail from time to time
- Power of mid-size fire is next to or already sufficient to penetrate the BL top inversion
 - considerable sensitivity to the governing parameters: strength of the inversion, released convective heat and total mass, etc
 - update of BUO-FMI model needed to bring the BL-penetration process in
- More detailed evaluation against carefully-selected observation cases is needed after the model update

Possible links btw needed and available data

- total mass flux + fumes temperature + FRP ⇒ total convective heat released
- total emission mass flux + land use +

vegetation maps \Rightarrow emission speciation

Input and output of a Fire Assimilation System

- Input meteorological data:
 - > wind, temperature and humidity profiles
 - boundary layer characteristics
 - > precipitation
- Input satellite-born products
 - active fire counts
 - > fire radiation power
 - Iand cover and vegetation maps
- Output
 - > 4D emission fluxes of the main released substances
 - short-term forecast of the fire development

Main modules of a FAS

- Pre-requisites:
 - > the satellite fire-characterizing retrievals
 - Iand cover and vegetation maps
 - meteorological fields
- Speciation-resolving emission flux model
- Injection height model
- Fire propagation model
- Gridding system that merges the derivatives from individual fires to 4D grid

User (atmospheric modeller's) needs

- Requirements strongly depend on application (and on person asking the data).
- Spatial resolution: now: 20-30km; sufficient for near future: 10km
- Time resolution: one day plus typical diurnal variation
- Availability: forecasting: less than 24 hours; re-analysis: any
- Fire characteristics
 - total amount and speciation of emitted mass
 - vertical distribution of emission
 - fire development in-between the observation slots (means of interpolation of ALL above data)
 - > quantitative assessments of accuracy (first of all, bias) of ALL above data