WP3.2 Preparation and Harmonization of aerosol satellite data set

Task 3.2a Tropospheric (column) aerosol products Jean-François Léon, Didier Tanré, Bertrand Crouzille Laboratoire d'Optique Atmosphérique, France

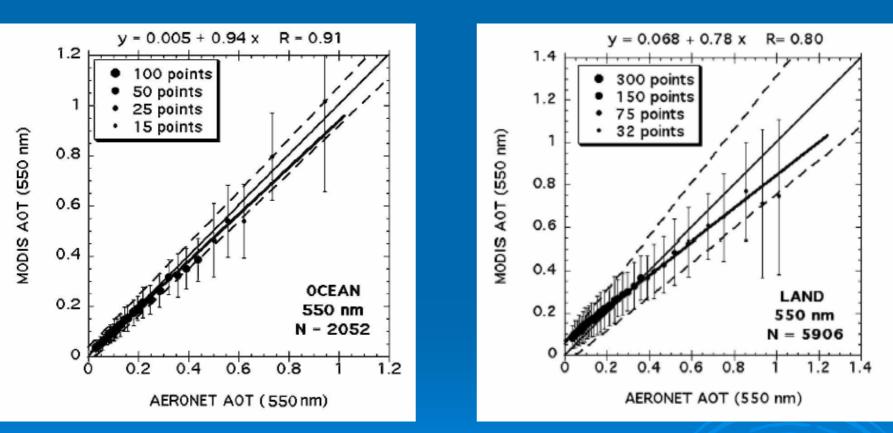
Objective

- Preparation of the aerosol satellite data to be assimilated in the ECMWF model
 - Harmonization of the dataset
 - Intercomparison/ validation
 - Evaluation of the error associated with the satellite products for a given pixel
 - Quantification of the main sources of uncertainty
 - Evaluation of the sensitivity of retrieved products

Error estimation

Basic quantity is the radiance measured at the satellite level

- Radiometric performance of the sensor
- The product is derived according to a scientific algorithm (e.g ATBD04 for MODIS)
 - Cloud screening algorithm
 - Many hypothesis in the retrieval algorithm (retrieval scheme, aerosol models, radiative transfer model, surface contribution,...)
 - No straightforward bottom-up estimate of the observational error


Satellite dataset

	I able 2	.7.5 Sateinte Da	ta on Aerosols to be us	ed in GEMS	
Agency	Mission	Instruments	Species	Estimated transfer to ECMWF per day of satellite life (MB/day)	
ESA	ENVISAT	MERIS	Aerosol Optical Depth at 865 nm Aerosol Epsilon Factor Radiances	TBD (target ~250MB/day maximum)	
ESA	ATSR AATSR	ERS-2 ENVISAT	Radiances used in GLOBAER project	TBD	
EUMET	MSG	SEVIRI	Radiation budget Radiances for inversion	TBD low-moderate volume	
	MSG	GERB	Radiation budget Radiances for inversion	TBD low-moderate volume	
NASA	TERRA	MODIS	Aerosol optical depth / Type / Size Distribution Radiances	600	
NASA	AQUA	MODIS	AsTERRA	600	
NASA	AURA	HIRDLS	Aerosol Optical Depth (4 wavelengths)	TBD low-moderate volume	
NASA	SAGE-II		Aerosol optical depth (8 wavelengths)	low volume, available on web	
NASA	SAGE-III		Aerosol optical depth (8 wavelengths)	low volume, available on web	

 Focus on MODIS sensors aboard AQUA and TERRA

- One of the more accurate aerosol product (AOT and size parameters)
- Global daily coverage
- Long-term dataset (since 2000)
- Absolute availability of data (Levels 1 & 2)
- Scientific support from NASA PI's

Statistical approach: validation vs. AERONET

bin average (from Remer et al., 2005)

- $\Delta \tau = \pm 0.05 \pm 0.15 \tau$ over land
- $\Delta \tau = \pm 0.03 \pm 0.05\tau$ over ocean

Observational errors

- Validation vs. AERONET data gives a good estimate of the overall accuracy of the product but not for a single observation
 - Error analysis for a given inversion : use of the Quality assurance flags
 - Assessment of the impact on the product : sensitivity studies

Quality of the inversion : use of the quality flags from MODIS atmosphere QA plan

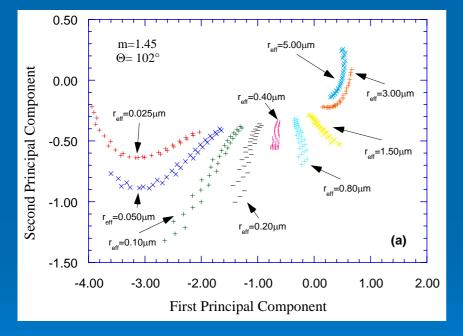

> Over oceans

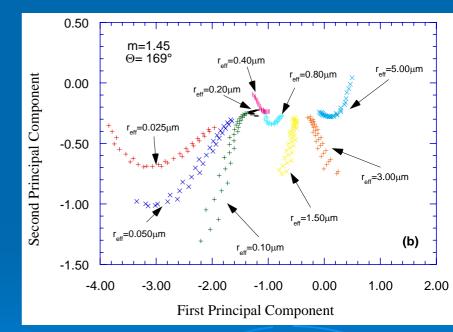
		10	All Channels do not have valid data
Part II: Aerosol over Ocean	4	0	Retrieval performed normally
Retrieving Condition when inversion		1	Number of useful pixels within 10 x 10 km box is < 10%
IS performed.		2	R (0.865 µm) low but large enough for retrieving optical
			thickness; the size distribution is questionable;
Note: T (550 nm) retrieved value			η = fill value
will be output.on conditions 0		3	1.65 µm channel not used
through 10.		4	2.13 µm channel not used
		5	1.65 and 2.13 µm channels not used
Confidence Flag Notes:		6	Aerosol type as well as aerosol content are variable
 If Retrieving Condition = 0, 		7	There is variability in aerosol content but the spectral
then Confidence. Flag is set to			dependence is stable
Very Good.		8	The best value of \mathcal{E} is larger than the threshold value
 If = 7, then Confidence Flag is 			(5%)
set to Good.		9	τ (550 nm) < 0 to avoid bias in level 3 product
 If = 1, 3, 4, 6, 8 or 10, then 		10	Glint angle between 30° and 40°
Confidence Flag is set to		11	Glint; Store only Refl., SD, and Number of Pixels Used
Marginal.			
• If = 2, 5, or 9, then Confidence			
Flag is set to No Confidence.			

 Quality of the inversion : use of the quality flags from MODIS atmosphere QA plan
 Over the land, use of the 2.1 μm channel to give the surface reflectance according
 p^s_{0.47} = 0.25 p_{2.13}; p^s_{0.66} = 0.50 p_{2.13},

processing path flags				
Dark Target Criteria	3	0	not met (Fill Value)	
used in retrieval		1	0.01 < <i>Ref</i> (2.1 μm) ≤ 0.05	
		2	0.05 < <i>Ref</i> (2.1 μm) ≤ 0.10	
		3	0.10 < <i>Ref</i> (2.1 μm) ≤ 0.15	
		4	0.15 < <i>Ref</i> (2.1 μm) ≤ 0.25	
		5	0.25 < <i>Ref</i> (2.1 μm) ≤ 0.40	

AOT sensitivity study example from Kaufman and Tanré, 1998




AOT and aerosol model is retrieved to minimize

$$\varepsilon = \sqrt{\frac{\displaystyle \sum_{\lambda=1}^{6} N_{\lambda} \left(\frac{\rho_{\lambda}^{\rm m} - \rho_{\lambda}^{\rm LUT}}{\rho_{\lambda}^{\rm m} + 0.01} \right)^2}{\sum_{\lambda=1}^{6} N_{\lambda}}},$$

Error due random calibration error, glint contamination, random error on the surface contribution, error on the spectral behavior of the surface

Sensitivity of the retrieval of size parameters (ocean) to the scattering geometry from Tanré et al., 1996

 Forward scattering favorable for small particle while backward scattering for large particles (Polder-like instrument needed)

Conclusions

Methodology to derive error at the pixel resolution to be finalized and implemented

 Recruitment of Bertrand Crouzille in Jan. 06 will boost up

Apply the same kind of approach to the overall set of satellite data (Globaer data ??)