

GEMS AEROSOL Task 2.4 Quantification of wind-blown sea salt emission. Contribution of FMI, year 1

M.Sofiev

Air Quality Research

Finnish Meteorological Institute

Task 2.4 sea-salt emission

- An approach of Monahan (1986) has been implemented to ECMWF model, 3 modes. Some tests performed (JJM)
- Alternative consideration of a more sophisticated hybrid scheme Monahan + Martensson has been considered in FMI. Model is partly implemented and some tests performed

Table 1. Coefficients for the Parameterization of $A_k (c_4 - c_0)$ and $B_k (d_4 - d_0)$ in Equation (6) for the Three Size Intervals (k)

10-1	•	10 ⁻²		10 ⁻⁴	
		10 ⁻⁷	10 ⁻⁰ D _p (m)		10" 10"
, 1					
0.020 - 0.145 0.145 - 0.419 0.419 - 2.8	$\begin{array}{l} 7.188 \times 10^{37} \\ 7.368 \times 10^{35} \\ -2.859 \times 10^{31} \end{array}$	$\begin{array}{r} -1.616\times10^{31} \\ -7.310\times10^{29} \\ 2.601\times10^{26} \end{array}$	$\begin{array}{l} 6.791 \times 10^{23} \\ 2.528 \times 10^{23} \\ -8.297 \times 10^{20} \end{array}$	$\begin{array}{r} 1.829\times10^{16} \\ -3.787\times10^{16} \\ 1.105\times10^{15} \end{array}$	$\begin{array}{l} 7.609 \times \ 10^8 \\ 2.279 \times \ 10^9 \\ -5.800 \times \ 10^8 \end{array}$
Size Interval, 10 ⁻⁶ m	d_4	d_3	d_2	d_1	d_0
0.020-0.145 0.145-0.419 0.419-2.8	$\begin{array}{l}-2.576\times10^{35}\\-2.452\times10^{33}\\1.085\times10^{29}\end{array}$	$\begin{array}{l} 5.932\times10^{28}\\ 2.404\times10^{27}\\ -9.841\times10^{23} \end{array}$	$\begin{array}{r} -2.867 \times 10^{21} \\ -8.148 \times 10^{20} \\ 3.132 \times 10^{18} \end{array}$	$\begin{array}{r} -3.003\times10^{13}\\ 1.183\times10^{14}\\ -4.165\times10^{12} \end{array}$	$\begin{array}{r} -2.881 \times 10^6 \\ -6.743 \times 10^6 \\ 2.181 \times 10^6 \end{array}$
Size Interval, 10 ⁻⁶ m	c_4	<i>c</i> ₃	c2	C1	C0

Idea for hybrid sea salt emission model

- Re-parameterize the Martensson's data into something more physical and numerically stable
 - basic shape of flux dependence on particle size
 - dependence on water temperature and salinity
- Extrapolate the obtained dependencies to Monahan's size range using his formula as the basic shape-function
- Result: a unified scheme to 10 nm 10 µm size range with explicit dependencies on salinity and water temperature

Next-step tasks

- Complete the transition and refinement of emission databases. Time variation coefficients remain a difficulty
- Re-analysis of 2003 will be done with ready-made fires emission database, which will give time for implementation of the assimilation system, which is to be started
- Next-step improvements and inter-comparison of the schemes for wind-blown dust and sea-salt emissions