

STRATOSPHERIC AEROSOLS Slimane Bekki, SA/IPSL, UPMC-CNRS

- WP_AER_1 : Implementation of the direct physical aerosol model in the ECMWF model Task 1.2: Implementation of parameterisations for stratospheric aerosols
 D_AER_1.1/2/3: Test simulations to be evaluated by WP_AER_4
- ° WP_AER_2 Refinement of aerosol emission sources
 - Task 2.5. Sources of stratospheric aerosols
 - D_AER_2.1: Global emission database of aerosols and its pre-cursors
- ° WP_AER_3: Aerosol data assimilation

Task 3.2b: Stratospheric (height-resolved) aerosol products

D_AER_3.2: Comparison of analyses without and with assimilation SAGE derived aerosol products

° WP_AER_2 Refinement of aerosol emission sources

Task 2.5. Sources of stratospheric aerosols

D_AER_2.1: Global emission database of aerosols and its pre-cursors

OCS = 512 pptv (no seasonal or spatial variations initially) + lumped (SO2+H2S+DMS) gas-phase tracer (constant stratospheric lifetime initially) + volcanic SO2 injections (TOMS columns; vertical distribution?)

° WP_AER_3: Aerosol data assimilation

Task 3.2b: Stratospheric (height-resolved) aerosol products

D_AER_3.2: Comparison of analyses without and with assimilation SAGE derived aerosol products

SAGE data available (validation data, no real time) CALIPSO?

Parameterisations of stratospheric aerosols (WP_AER_1, Task 1.2)

1-moment scheme (initial phase):

Assume log-normal size distribution of H_2SO_4/H_2O aerosols = f (total number N_o, width σ , mode radius R_{mod}, composition WP_{H2SO4})

<u>Prognostic variables:</u> Total H_2SO_4 (gas-phase+condensed), WP_{H2SO4} <u>Processes:</u> Transport + Chemistry + Aerosol microphysics (sedimentation, no explicit treatment of nucleation and coagulation)

1/ Photochemical production of H_2SO_4 from OCS/SO2 oxidation

- ° [weekly climatologies from full model]
- ° WP_{H2SO4} = f(T, humidity) [look-up table from full model]
- 2/ N_o derived from Total H₂SO₄, WP_{H2SO4}, and R_{mod} ° σ and R_{mod} [weekly climatologies from full model]
- 3/ H_2SO_4 partitioning between gas phase and aerosol phase: N_o scaled if P(Total H₂SO₄) < SVP(H₂SO₄) [=f(activity, WP_{H2SO4}, T)] N_o=0 else N_o= N_o * [P(Total H₂SO₄) - SVP(H₂SO₄)]/ P(Total H₂SO₄) opdif

endif

4/ Effect of sedimentation on Total H_2SO_4 24 bins: $N_{aerosol}$ = f (N_o , σ , R_{mod})

Full aerosol microphysical model in 1, 2 or 3-D CTM

Size distribution of H_2SO_4/H_2O aerosols

<u>Prognostic variables:</u> 26 size bins (0.01 < R_i , < 2.5 um), Number N_i , composition WP_{H2SO4}

<u>Processes:</u> Transport + Chemistry + Aerosol microphysics (nucleation, condensation/evaporation of H_2SO_4/H_2O , coagulation, sedimentation)

° Both (full and 1-moment) schemes inserted in the SA-UPMC global 2D CTM

 Full scheme has been fully assessed: SPARC intercomparison (2D and 3D models) comparison against satellite, balloon and lidar measurements. (SPARC ASA report)
-> acts as a benchmark for the 1-moment scheme

Figure 8.18: Aerosol extinction profiles $(10^{-4} \text{ km}^{-1})$ at 0.525 and 1.02 μ m for winter at 45°N, summer at 45°N, and March. April and May at the equator. SAGE II data for 1995-2000 are shown by symbols with error bars, model results by colored lines.

Figure 6.17: Aerosol extinction profiles $(10^{-1} \text{ km}^{-1})$ at 3.46 and 5.26 μ m for winter at 45°N, summer at 45°N, and March. April and May at the equator. HALOE data for 1996-2000 are shown by symbols with error bars, model results by colored lines.

Figure 6.32: Aerosol extinction at $1.02 \ \mu m$ for 1991 to 2002 at (a) 45°N and 20 km and (b) 45°N and 26 km. SAGE II data are shown by symbols, model results by colored lines.

ON-GOING/FUTURE WORK

° A 2-moment scheme is being coded and tested (more degrees of freedom, more problems)

^o Can the scheme be coupled, or even merge, to the tropospheric aerosol scheme, perhaps outside the ECMWF model (in LMDz)?