Bias correction issues in limited area models: a strategy for ALADIN

Roger RANDRIAMAMPIANINA

Hungarian Meteorological Service, Budapest, Hungary roger@met.hu

Acknowledgement: - R. SZOTÁK, L. KULLMANN, S. KERTÉSZ and E. GÉRARD Use of satellite radiances in the ALADIN community

- Use of Harris and Kelly's method in LAM
- Impact of bias correction files in the LAM analysis and short-range forecasts
- Conclusions

Use of raw radiances in the ALADIN community

Investigation of satellite radiances in the ALADIN model:

→ Météo France

→ Moroccan Meteorological Service

→ Hungarian Meteorological Service

Investigation of satellite radiances in the ALADIN model:

→ Météo France
→ Presented by E. GÉRARD

Moroccan Meteorological Service (Zahra SAHLAOUI)
 Export of the observations and bias correction file from Toulouse

→ Hungarian Meteorological Service

Use of locally received and pre-processed radiances and those re-transmitted through Eumetcast

Local reception trough HRPT antenna and pre-processing using the AAPP package

Use Harris and Kelly's method in LAM

The problem of the use of Harris and Kelly's method in LAM computed scan angle bias LAM domain

as correction file in LAM?erature puted for the global model? apour

The ALADIN/HU model and its assimilation system

Model: - Hydrostatic (AL15/CY24T1)

- Horizontal resolution: 12 km
- 37 vertical levels

3D-Var: - Background error covariance matrix "B": computed using "standard NMC" method

- RTTOV as forward model
- 6 hour assimilation cycling: 00, 06, 12 and 18 UTC
- coupling every 6 hours: ARPEGE long cut-off analysis
- Satellite data (AMSU-A) from NOAA-15&16 [ch. 5-12]
- **OI:** Surface fields analysis

Forecast: - 48h from 00 UTC

Description of the experiments (performed for a two-week period)

- •NT80U: ALADIN/HU bias correction file (control run in this study)
- •T8B1I: ARPEGE bias correction file
- •T8B2I: ARPEGE scan angle bias and NO air-mass bias
- •T8B3I: ARPEGE scan angle bias and ALADIN air-mass bias

•NOT8U: The same as NT80U for the second period
•O8B1I: The same as T8B1I for the second period
•O8B3I: The same as T8B3I for the second period

Results

BIAS (ARPEGE bc vs ALADIN bc)

RMSE (ARPEGE bc vs ALADIN bc)

RMSE (ARPEGE scan angle NO air-mass bias)

RMSE (ARPEGE scan angle ALADIN air-mass bias)

Total number of active sat. observations:18.04.2003 - 07.05.2003

Atmospheric Pressure (hPa)	ARPEGE model levels	Coupling and ALADIN/HU model levels
1-200	12	9
200-400	6	6
400-800	12	11
800-1000	11	11

Conclusions (1)

• Our experiments show the importance of the bias correction coefficients in the pre-processing of the AMSU-A data in the ALADIN/HU LAM

• In lower troposphere, the use of the global bias correction file showed different impacts

→LAM bias correction coefficients provide a "stable" impact on analysis as well as on the short-range forecasts

• ARPEGE and ALADIN models use basically the same parameterisation of physical processes. Nevertheless, we have to compute the bias correction file for ALADIN to have better processing of the AMSU-A data in the analysis system

Conclusions (2)

- The air-mass bias correction must be included in the processing of AMSU-A data in the LAM
- Channels 10-12 in LAM are very sensitive to the bias coefficients computed for the global model
- Applying the ARPEGE bias correction coefficients we used more observation for channels 5-7 and got positive impact near the surface
 → Not to do local surface analysis
 - → Use of the ARPEGE analysed surface fields instead of the LAM ones

How often do we need to update the bias correction file? Observation monitoring system – *monitoring of AMSU-A ch. 8* one week

How often do we need to update the bias correction file? Observation monitoring system – *monitoring of AMSU-A ch. 8* longer period

• The validity of the bias correction coefficients varies from 2-4 months

• The bias correction coefficients are computed within a period of about one month

Thank you for your kind attention!