

Satellite Instrument Calibration Issues: Experience Gained from SSMIS

W. Bell, S. English, S. Swadley¹ & G. Kelly² ¹ Naval Research Laboratory, Monterey, CA, US ² ECMWF, Reading, UK

Acknowledgements : B.Candy, F.Hilton, A. Smith, N.Atkinson, J. Eyre organisers & participants in *SSMIS mini-workshop*, NRL, Oct 2005

Bias Estimation and Correction in Data Assimilation, ECMWF, 8 -11 November 2005

Outline

- Background
- Instrumental biases & correction strategies :
 - Warm load solar intrusions
 - >Intrusion mapping (Met Office)
 - ≻Gain correction (NRL, NOAA)
 - Reflector emission
 - >Empirical correction
 - ➢Physical basis
- Radiance monitoring & analysis increments
- Initial forecast impact studies at ECMWF
- Future developments
- Summary & conclusions

Background: Instrument and scan geometry

Special Sensor Microwave Imager/Sounder (SSMIS)

Background: SSMIS Channels

Background: Accuracy Requirements and Initial Performance

Background: two step approach to bias correction

© Crown copyright 2005

Instrumental Biases: warm load solar intrusions

Offline signal processing to detect solar intrusions / gain anomalies

Solar intrusion map

Performance: April – June 2005

Intrusion flagging: coverage

Gain Correction using Fourier Filtering: no correction

Gain Correction using Fourier Filtering: corrected

Reflector Emission: entering Earth shadow

Reflector Emission: emerging from Earth shadow

Reflector emission

© Crown copyright 2005

Page 18

Reflector emission correction

$$T_{obs} = (1 - \mathcal{E})T_{scene} + \mathcal{E}T_{ant}$$

$$T_{scene} = \frac{T_{obs} - \varepsilon T_{ant}}{(1 - \varepsilon)}$$

 $\begin{array}{l} \mbox{Compute tolerable errors in} \\ \epsilon \mbox{ and } T_{ANT} \ (\Delta \epsilon \mbox{ \& } \Delta T_{ANT}) \\ \mbox{given tolerable errors in} \\ T_{SCENE} \ (\Delta T_{SCENE}) \end{array}$

$$\Delta \varepsilon = \Delta T_{scene} \left[\frac{\partial T_{scene}}{\partial \varepsilon} \right]^{-1}$$

$$\Delta T_{ant} = \Delta T_{scene} \left[\frac{\partial T_{scene}}{\partial T_{ant}} \right]^{-1}$$

Required accuracy in estimate of antenna emissivity and temperature

Ch #	pol	ΔT_{scene}	٤ _{nom}	Δε	ΔT_{ant}
		/K			/K
1 - 5	V	0.1	0.01	8000.0	10
6,7,19-24	RC	0.1	0.02	0.0010	5
9 - 11	Н	0.5	0.04	0.0060	12
12 - 16	V/H	0.5	0.00	N/A	N/A

 \Rightarrow Require T_{ANT} to be accurate to 5K and emissivity estimates to be good to ~0.0008 for T sounding channels to keep T_{SCENE} errors below 0.1K

SSMIS – antenna emission correction using constructed antenna T

Characterising T_{ANT} & ϵ : Chs 2 – 7

© Crown copyright 2005

Characterising T_{ANT} & ε : Chs 9 - 11

QU18 08/06/05

Determination of ε and T less Precise due to larger uncertainties in NWP q fields

Characterising T_{ANT} & ε : Chs 12 - 16

QU18 08/06/05

ε = 0 (*ie* reflector emissivity shouldn't be a problem for SSMI like - channels)

Physical basis for empirical reflector correction (1) We office Heat transfer equation for support arm : ∂T

sink at 218K

© Crown copyright 2005

Physical basis for empirical reflector correction (3)

$$T_{ant}(t) = T_{ann}(t) + c_1 \int_0^T c_2 e^{-\tau/\sigma} \frac{dT_{ann}}{dt} (t-\tau) d\tau$$

Assuming reflector cools conductively, $T_{ant}(t)$ can be obtained from the solution of :

$$\frac{\partial T_{ant}}{\partial t} = a_1 f(t) - a_2 (T_{ant} - T_0)$$

Difference usually < 5K

Need to check a_1 and a_2 (fitted) are plausible given thermal properties of main reflector

Performance of reflector emission correction

C Cromi copyright 2000

© Crown copyright 2005

Forecast Impact Studies at ECMWF

- Best correction algorithms (from NRL, Met Office and NOAA) will be incorporated in a pre-processor to be run at FNMOC, Monterey to produce a new data stream. Expected early 2006.
- Hardware modifications are in place for F17:
 - Fence to prevent direct solar intrusions
 - Temp sensor re-sited at centre of (back of) reflector (?)
- F17 launch June Dec 2006

Summary & Conclusions

- In the 2 years since launch a number of important instrument biases in F16 SSMIS have been investigated and are now understood
- Correction algorithms have been developed and the best will be incorporated in a pre-processor to be run at FNMOC
- Baseline forecast studies show the impact of F16 SSMIS to be > 50 % impact of AMSU-A on N-15
- Further improvements expected as coverage is improved, corrections are tuned and more channels are used
- SSMIS should be an important component of NWP DA systems over the next 10 years

Summary & Conclusions (contd)

- Some instrumental biases are not easily dealt with in conventional predictor based schemes, new diagnostics are needed to study these and develop correction algorithms
- Ever more complex radiometry (conical scan, aperture synthesis, imaging interferometric) may pose even more complex bias problems – we need to be flexible in developing solutions
- NWP fields can be very useful in instrument Cal/Val we should be prepared to contribute to Cal/Val efforts

The End

.....Thanks.

© Crown copyright 2005