Health Impacts of Extreme Weather Events
Total number of natural disasters reported. World: 1900-2004

Year
Number of disasters

OFDA created (1964)
CRED created & OFDA began compiling (1973)
EM-DAT created (1988)

Total number of natural disasters reported. World: 1900-2004

EM-DAT: The OFDA/CRED International Disaster Database - www.em-dat.net - Université Catholique de Louvain, Brussels - Belgium

- Wave (5)
- Wildfire (7)
- Volcano (3)
- Earthquake (1)
- Windstorm (2)
- Extreme Temperature (8)
- Slide (9)
- Flood (6)
- Drought (4)
Natural disasters: 1974-2003
Victims of natural disaster per 100,000 inhabitants: '74-'03
Flooding affects health in Europe

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>total 2000-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>31</td>
<td>25</td>
<td>42</td>
<td>24</td>
<td>23</td>
<td>145</td>
</tr>
<tr>
<td>Death</td>
<td>90</td>
<td>103</td>
<td>421</td>
<td>184</td>
<td>72</td>
<td>870</td>
</tr>
<tr>
<td>Affected</td>
<td>182,591</td>
<td>743,214</td>
<td>1,024,901</td>
<td>66,811</td>
<td>412,278</td>
<td>2,429,795</td>
</tr>
</tbody>
</table>

Source: EM-DAT: The OFDA/CRED International Disaster Database
www.em-dat.net - Université Catholique de Louvain - Brussels - Belgium

The numbers represent the number of people affected.

Flood events 2000-2003
- 1 flood
- 2 - 4 floods
- 5 - 9 floods
- 10 - 16 floods
- No floods registered
Flooding affects health in Europe

1992: 1346 killed in Tajikistan
1993: 125 died in Yekaterinburg, Russia
1996: 86 died in the Biescas campsite, Spain
1998: 147 died in Sarno, Italy
2002: 120 died in Central Europe

Flooding affects health in Europe

Immediate: death, injuries, hypothermia

Medium-term: gastro-intestinal infections and respiratory diseases

Long-term: mental health consequences

Direct effects: Drowning, injuries, health implications due to contact with (cold, polluted) water, cardiovascular incidents.

Indirect effects:
- Waterborne infections;
- vector-borne diseases;
- food shortage;
- health effects of chemical pollution;
- decrease of health care and emergency service;
- psychosocial disturbances.

Menne 2000
Risk of floods will increase

- Magnitude and frequency of floods are likely to increase;
- Impact of floods increases because more people live in areas at risk of flooding;
- Human activities contribute significantly to increasing the risk of floods.

Christensen et al 2003
Flood events can be mapped:

Map 1 Recurrence of flood events in Europe 1998–2002

EEA 2005
Adapt to flooding by

Primary and secondary preventive measures:

- Building codes, legislation to relocate structures away from flood-prone areas
- Planning appropriate land use
- Floodplains and flood-control structures
- Early warning systems with advice

Locally: better information, better warnings, post-event care
Research gaps have been identified

- Retrospective analysis of flood morbidity and mortality using routine data sources or pre-existing cohorts;

- Impacts of floods on European health care systems;

- Flood early warning systems, current effectiveness;

- Cost benefits of preventing injuries, deaths and morbidity from floods;
Heat is an emerging issue

- The hottest summers since 1880 occurred within the past 15 years;
- Extreme weather events occur more frequently.

Schaer et al 2004
Hot weather causes excess deaths

INVS, 2003

<table>
<thead>
<tr>
<th>Country</th>
<th>Excess deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>England and Wales</td>
<td>2045</td>
</tr>
<tr>
<td>France</td>
<td>14802</td>
</tr>
<tr>
<td>Portugal</td>
<td>2229</td>
</tr>
<tr>
<td>Spain</td>
<td>3166</td>
</tr>
<tr>
<td>Germany</td>
<td>1415</td>
</tr>
<tr>
<td>Switzerland</td>
<td>975</td>
</tr>
</tbody>
</table>

Some risk factors are

Individual:
• being over 60 (Keatinge, WR et al., 2000; Basu, R. and Samet, 2002),
• suffering from pre-existing illness, especially heart and lung diseases;
• mental illness (Kaiser et al., 2001);

Social:
• working in jobs requiring heavy labour,
• living in inner cities and lower-income census tracts, (Basu, R. and Samet, 2002);
• being exposed to low economic status, (Basu, R. and Samet, 2002);
• people with impaired health but also those suffering from poor social conditions are most susceptible to impact of weather changes (Ballester et al., 2003; O'Neill et al., 2003);
• Additional behavioural risk factors (Semenza et al., 1996):
 living alone, being confined to bed, not being able to care for oneself, having no access to transportation, not leaving home daily, social isolation;
Relationship between temperature and emergency hospital admissions in London

- Cardiovascular
- Stroke
- Respiratory
- Renal
Why was France so badly affected?

- **Temperature extreme**
 - high minimum temperatures for a long time

- **Surveillance**
 - Delayed detection of the increase in mortality

- **Institutional failures**
 - Poor communication
 - Hospital/care home staff on holiday
 - Lack of cooling facilities

- **No experience/knowledge**
 - no public health measures in place
<table>
<thead>
<tr>
<th>Purpose of measures</th>
<th>Strategies</th>
<th>Sector involved</th>
<th>Level</th>
<th>How does it work?</th>
</tr>
</thead>
<tbody>
<tr>
<td>To reduce the urban heat island</td>
<td>Increasing green areas. Reducing building density. Maintain and improve ventilation paths through changing the layout and width of streets, orientation of streets in relation to prevailing winds.</td>
<td>Public urban planning</td>
<td>Municipal and Regional</td>
<td>Increases, reflection of short wave radiation; Reduces heating of urban structures by reducing heat release during night time and energy consumption; Provides shade and cooling; Allows cool air to enter the city and increase the wind speed.</td>
</tr>
<tr>
<td>To reduce indoor heating of the buildings</td>
<td>Use of building materials with a high albedo and low heat storage capacity. High thermal insulation. Shading of the windows. Building compact houses with small surface areas of the walls for a given floor area. Building orientation.</td>
<td>Public urban planning, architecture, Private construction firms</td>
<td>Municipal and Private</td>
<td>Reduces solar heating of the building (max. difference of surface temperature between white and black roof: 40 K. Natural ventilation during night.</td>
</tr>
<tr>
<td>To develop a heat health warning system</td>
<td>Meteo and public health offices development of a heat health warning system.</td>
<td>Meteorological and health services-....</td>
<td>Municipal and National</td>
<td>To warn the population and health care services some hours in advance.</td>
</tr>
<tr>
<td></td>
<td>Heat advice to the general public, medical staff and City managers on behavioural measures.</td>
<td>Media</td>
<td>National</td>
<td>Ensure preparedness and awareness of the problem to reduce exposure to heat.</td>
</tr>
<tr>
<td></td>
<td>Medical advice to patients.</td>
<td>Health care staff</td>
<td>Local</td>
<td>Prevent people from dehydration, control medical treatment, increase patient surveillance, etc.</td>
</tr>
<tr>
<td></td>
<td>Create a telephone hot line for advice.</td>
<td>Local</td>
<td></td>
<td>Provide access to information.</td>
</tr>
<tr>
<td>To protect the elderly</td>
<td>Systems to look after elderly.</td>
<td>Health care facilities, hospitals (national, municipal level)</td>
<td>National and Municipal</td>
<td>To ensure that this vulnerable group has access to a cool environment and will take enough liquids.</td>
</tr>
<tr>
<td></td>
<td>Information of hospitals, nurseries etc.</td>
<td>Health care facilities, hospitals (national, municipal level)</td>
<td>Municipal and Regional</td>
<td>To ensure that heat related morbidity is identified and treated in an appropriate way.</td>
</tr>
<tr>
<td></td>
<td>Education</td>
<td>Schools, media, health care facilities, families. All levels</td>
<td>National– firms</td>
<td>Ensure appropriate behaviour in case of extreme heat events (liquid intake, reduction of exposure to heat etc.).</td>
</tr>
<tr>
<td></td>
<td>Adapt working hours to outdoor thermal environments (e.g. siesta)</td>
<td>National– firms</td>
<td>National– firms</td>
<td>Reduce exposure to heat.</td>
</tr>
</tbody>
</table>
Heat warning systems

Heat health warning systems before and after 2003
Heat is an emerging issue

- Climate change includes warming and increasing climate variability

- Extreme weather events occur more frequently

- The hottest summers since 1880 occurred within the past 15 years

Schaer et al. 2004
Prevention is possible with

Actors
City planners
Unions
Housing developers
National Weather Service

Physical action
Heat shelters
Changing roof Tops
Planting trees
Forecasting

Media/ network
Social services
Flyers
Neighbourhood meetings
Local TV and Radio
Internet

Social action
Risk communication
Community heat education
Community “buddy” system
Thanks for your attention!

Bettina Menne
bme@ecr.who.euro.int

http://www.euro.who.int/globalchange