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Canadian Hemispheric and Regional Ozone
and NOx System = CHRONOS

CHRONOS is a CTM used in operational air quality
prediction, data assimilation and real-time scenarios

« 21 km, terrain following height
coordinate (Gal-Chen)
from 0-6 km

 continental domain

« ADOM-II chemical reactions

2 bin PM representation:
PM 2.5 PM 10

» gas-phase and heterogeneous
chemistry

 aerosol physics:sedimentation




CHRONOS operational version (public)

* 1 run/day (00Z) , 48 h forecast

« surface ozone objective analysis

* predicts O3, PM2.5 mass, PM 10 mass
http://www.msc-smc.ec.gc.ca/aqg_smog/aqg_guidance_e.cfm

CHRONOS experimental version (ICARTT)
2 runs/day (00Z and 12Z), 48 h forecast
« assimilation of surface O3 observations

CHRONOS real-time scenarios (MSC)
7 runs/day (00Z), 24 h forecast
« On/Off runs for different regions

All US and Canadian emissions Canadian emissions only



Objective analysis and assimilation of surface ozone observations

Alain Robichaud, Richard Ménard, AQMAG team

 Assimilation and
objective analysis
using the model
CHRONOS

 Objective analysis
each hour, 24/7,
year round

» Operational since
June 2004

» Multiyear analyses
since the summer
2002

Prévision de I'ozone en surface (modéle CHRONOS)
Surface ozone forecast (CHRONOS model)

Analyse objective de 'ozone en surface
Surface objective analysis

Incrément d’analyse (correction au modéle)
Analysis increment (model correction)

Observation d’'ozone en surface
Surface czone Observations
(Source: U.S. EPA AIRNOW)

http://www.msc.ec.gc.ca/aq_smog/analysis_e.html



Global Environmental Multi-scale Air Quality model
= GEM-AQ

GEM is the operational meteorology model
with 4D Var capability

* semi-Lagrangian

» global/variable (100km),
limited area (15 km)

» Tropospheric 10 hPa

 Stratospheric 0.1 hPa
non-horographic GWD
Li and Barker k-correlated radiation

On-line chemistry

 Tropospheric chemistry (ADOM-II) with
EDGAR emissions York University

 Stratospheric chemisty York University +
BIRA-IASB




Online assimilation with operational model GEM
Richard Menard, Alain Robichaud,
and Pierre Gauthier

Model: GEM-AQ (J. Kaminski and L. Neary, York University, Ontario)
Tropospheric chemistry with prescribed surface emissions online with the
operational meteorological model GEM-DM v3.1.2
3DVAR-CHEM: Y. Yang and Yves Rochon, MSC — Downsview
Chemical tracers analysis added (online) on the operational 3D Var
assimilation system MSC-DORVAL)

MOPITT: Canadian instrument (J.Drummond, U of T) (validation V3.0) mounted
on satellite EOS-TERRA
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Coupled chemical-dynamical data assimilation
R. Ménard, P. Gauthier, A. Robichaud, Y. Yang, A. Kallaur,
S. Ménard, M. Charron, X. Xie (Meteorological Service of Canada)

D. Fonteyn, S. Chabrillat (Belgium Institute for Space Aeronomy)

J. McConnell, J. Kaminski, L. Neary, J. Jarosz (York University)

*Two year project (ESA) to examine the benefits and drawbacks
of chemistry-dynamics coupling in data assimilation
type of coupling: Online , offline, semi-online , multivariate

« 3D and 4D Var assimilation of meteorology and chemistry observations
from ENVISAT

U
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Canadian Middle Atmosphere Model = CMAM

CMAM is a complex GCM with interactive

chemistry, radiation and dynamics

* T47, 65 levels from 0-95 km
» 127 gas-phase chemical reactions

* heterogeneous chemistry
* Hines GWD scheme

CMAM Data Assimilation

(Polavarapu, Ren, Rochon, Sankey, Yang)

« CMC’s 3DVAR on CMAM’s
coordinates

* obs: conventional, AMSU-A 4-14

« start-up from climate state
Dec. 15, 2001
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Outline

©CooNO

Surface observations
- AIRNOW real-time observations
- Canadian and US surface observations: current and planned
Kalman filtering theory
- algorithm
- asymptotic stability
Optimum interpolation using surface ozone observations
- model improvement
- implementation
- covariance modelling
- statistical consistency
- verification
- background error vertical correlation
Other species
- why univariate ?
- impact of O3 analyses on other species
Prediction
Environmental impact
How important is chemistry in assimilation and monitoring ?
Ongoing and future direction
Some outstanding problems in chemical data assimilation
- unobserved species: analysis, error statistics



1. Surface observations

Real-time observations : US-Canada

 Available from AIRNOW (US EPA) Data Management Center
currently ftp download ASCII files , future BUFR distributed by NOAA
currently Canadian observations collected at CMC in BUFR

« Data automatically QA/QC’s each hour at US EPA

 Available 20-30 min. past the hour

Ozone ppm ~1300 | hourly Good
PM2.5 ug/m3 |~ 450 |hourly Mod-Good

PM10 ug/m3 |~ 40 hourly Limited
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Canadian Greenhouse Gases
Measurements Network (MSC)
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4} Existing sites
4} Possible sites planned for EOS

(integrated measurements of GHGs and CO,
isotopes with CO2 flux)
#  Starting year for vertical profile by NOAA

Current measurements

5 Flask-sampling sites (CO,, CH,, CO, N,O, SFg H,, §13C and §'80 in CO,)
4 in-situ measurement sites (CO,, CH,, CO, N,O, SFgconcentrations)

1 CO,flux measurement site

Meteorological Service of Canada
| Erwironment Canada . =
Ozone Monitoring Network f

AEROCAN NETWORK

® Existing Sites
* New Sites (2004)
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Repository of monitoring networks (US & Canada)

NATChem www.msc-smc.ec.gc.ca/natchem/index e.html

AQ, climate and toxics data sets

e




Future (proposed) of AIRNow (ref Chet Wayland, US EPA)

US EPA DMC can accept additional parameters
precursor gases
speciation of aerosols
meteorological parameters

Continuous measurements of precursor gases at 24 sites
NO, NO, (true measurement), NO,, NO,, SO,, CO

Continuous measurements of aerosols speciation at 10 sites
EC (elementary carbon PM2.5)
OC (organic carbon)
BC (black carbon)
UBYV (second channel of Aethalometer)
NO, ions (nitrate)
SO, ions (sulfates)



2. Kalman filtering theory

\

In a Kalman filter, the error covariance is dynamically evolved between
the analyses, so that both the state vector and the error covariance are

updated by the dynamics and by the observations.

e Prediction
X', =M x2

n+1

Pnf+1:MnPr?M-rl1- +Qn

e Analysis

Xp =X +K (Y, —HX})

K, =P/H(H,P/H +R, ]
P2=(1 - K H )P/

observations

oy —"

»
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Analysis




Definition The Kalman filter produces the best estimate of the atmospheric state
given all current and past observations, and yet the algorithm is sequential in time
in a form of a predictor-corrector scheme.

From a Bayesian point of view the Kalman filter constructs an estimate based on
p(xn |yn ’yn—li"'1y0)

Time sequential property of a Kalman filter is not easy to show

Example: Estimating a scalar constant using no prior, and assuming
white noise observation error with constant error variance.
The MV estimate can be shown to be the simple time averaging

" 1&
Xy = EZ Yi
i=1

and which can be re-written in a sequential scheme
1 k+1

Rer=—"—Y _ K li sly =K gt
k+l_k+l yi - k+1 k — yi kyk+l_ k+1 k kyk+1

i=1



a) Asymptotic stability and observability

¢ \We say that we have observability when it is possible for a
data assimilation system with a perfect model and perfect observations
to determine a unique initial state from a finite time sequence of
observations.

L
Example: one-dimensional advection
over a periodic domain
% _, o )
ot OX

continuous observations at a single
point x=0 over a time T=L/U determines
uniquely the initial condition ¢,(x) = ¢(x,0)

0 ¥t
T=L/U

Theorem. If an assimilation system is
observable and the model is imperfect, Q=0 , then the sequence of forecast
error covariance {Pkf }converges geometrically to P which is independent of P,



Error variance

Results from the assimilation of CH, observations from UARS

Menard and Chang (2000)

1 Kalman filter
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Ol and other sub-optimal schemes

The accumulation of information over time is limited by model error, so that
In practice we need to integrate a Kalman filter only over some finite time to

obtain the optimal solution




3. Optimum interpolation using surface ozone observations

Motivations

» Tropospheric ozone analysis using an alternative approach to
assimilating limb/nadir combination of satellite measurements

« Surface ozone measurements are accurate (<1 ppb),
calibrated each night, very small bias, reports each hour
in real time, fixed location, extensive spatial coverage.
They are ideal to construct error statistics.

* |dentify the main model problems, and hopefully correct them.
* To have quickly an operational product, which then helps
to take the next step in the development of

a comprehensive chemical weather system.

« Air quality analyses and derived quantities (although it may not
impact significantly the air quality prediction).



a) model improvement

daytime bias : ORIGINAL version

INNOVATION: MEAN AND STD.DEV, CHRONOS MODEL

JULY 7 -21 2004 ALL NA ONLY
EFFECT OF NEW EMISSICNS ON SURFACE OZONE

ERROR (PPB)
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ORIGINAL version (pre assimilation era) of CHRONOS
* bias (red) and error standard deviation (blue) of ~ 20 ppb
and sometime of comparable size —— no assimilation

Last year (with improvement on clouds, dry deposition, and emissions)
* bias (~ 5 ppb, black curve) is smaller than the error standard deviation (green ~ 15 ppb)



In assimilation

Incremental analysis vs cloud
Case study. May 02 2004 20Z

I%SC/SNOCNC GOES 2004-05-02 21:00 UTC VISHIR

e ’ @ ) v
Eanaga ™™ Einaga e yi o i r EIAEIEENS)

Sun May 02 2004, 20 UTC b,
Increment d’analyse
Analysis increment

* Photochemistry in CHRONOS uses NMP model clouds.
* Increase model top in order to better represent clouds in the CTM



b) Implementation of optimal interpolation

What is optimum interpolation ?

Approximation to the steady-state Kalman filter

° Prediction
=M x

n+1

e Analysis

Xa =Xp + K, (Y, =H.Xp)
K, = K, )
Kn(l) g( |’ obs) [B( obs’ obs)+R]

Remarks:

where i1 =1, ..., N(number of model
grid points)

K is a row vector of dimension p
(number of observations)

. is the position of grid point i

r.. 1S avector of position of
observations

1- Data selection is used to permit the inversion of the innovation

covariance matrix

2- The innovations are generally used to obtain (fit) a functional form of

the background error covariance

3- The background error variances are extrapolated to the whole

model domain



Covariance modelling

Positive definite matrix (Horn and Johnson 1985, Chap 7)

A real n x n symmetric matrix A is positive definite if
¢c'Ac>0

for any nonzero vector ¢c. A is said to be positive semi-definite if
c'Ac>0

Properties
» The sum of any positive definite matrices of the same size is also

positive definite
 Each eigenvalue of a positive definite matrix is a positive real number

 The trace and determinant are positive real numbers.

Covariance matrix

The covariance matrix P of a random vector X = [X,, X,, ..., X;]" is the matrix
P = [Pyl inwhich P, = E|[(X, - X,)(X, - X )| where X, =E[X,]

and E is the mathematical expectation.




Property: A covariance matrix is positive semi-definite

E[(cl(xl—>?1)+...+cn(xn —Xn))z]: E{Zn:ci(xi -X,)e, (X, - X))

i, j=1

= Y eE[(X, - X)X, - X )], =¢'Pe 2 0

i, j=1

Remarks
1 - It is often necessary in data assimilation to invert the covariance matrices,
and thus we need to have positive definite covariances

2 — The positive definite property is global property of a matrix, and it is not
trivial to obtain



Examples:

a) Truncated parabola

for n=4

1.000
0.937
0.750
0.437

0.000

0.937
1.000
0.937
0.750
0.437

A

)

d2

0 otherwise

0.750
0.937
1.000
0.937
0.750

0.437
0.750
0.937
1.000
0.937

0.000 |
0.437
0.750
0.937
1.000

for i—j| <n

eigenvalues

3.8216
1.2500
0.0000
0.0000
—0.0716



-] .
b) Triangle C(, j) { —‘d—‘ for ‘I— j‘ <n

/\ 0 otherwise

for n=4 eigenvalues

(1.000 0.750 0.500 0.250 0.000] 3.0646
0.750 1.000 0.750 0.500 0.250 1.3090
0.500 0.750 1.000 0.750 0.500 0.2989
0.250 0.500 0.750 1.000 0.750 0.1910

10.000 0.250 0.500 0.750 1.000 | 0.1365




Covariance functions (Gaspari and Cohn 1998)

Definition 1: A function P(r,r’) is a covariance function of a random field X if
P(r,r) = (IX(O) = (X (OIX () =(X ("))

Definition 2: A covariance function P(r,r’) is a function that defines positive
semi-definite matrices when evaluated on any grid.
That is, letting r; and r; be any two grid points, the matrix P
whose elements are P;; = P(r;,r;) Is defines a covariance matrix,
when P is a covariance function

The equivalence between definition 1 and 2 can be found in Wahba(1990, p1-2).
The covariance function is also known as the reproducing kernel.

Remark Suppose a covariance function is defined in a 3D space, I' € R’
Restricting the value of r to remain on an manifold (e.g. the surface of a unit sphere)
will also define a covariance function, and a covariance matrix (e.g. a covariance
matrix on the surface of a sphere)



Correlation function A correlation function C(r,r’) is a covariance function
P(r,r’) normalized by the standard deviation at the points r and r’

N P(r,r')
crr) = JP(r,r) JP(r,r)

Homogeneous and isotropic correlation function If a correlation function
Is invariant under all translation and all orthogonal transformation, then the
correlation function become only a function of the distance between the two

points, Cr.r) =

Smoothness properties

e The continuity at the origin determines the continuity allowed on the rest of the
domain. For example, if the first derivative is discontinuous at the origin, then
first derivative discontinuity is allowed elsewhere (see example with triangle)

Spectral representation
e On a unit circle C(r,r') = R(cosd) = Zam cos(mé)

m=0
where 6 is the angle between the two position vectors, and where
and all the Fourier coefficients a_, are nonnegative

e On a unit sphere C(r,r') = R(cos®) = Zb ' (cos0)

where all the Legendre coefficients b, are nonnegative.



Examples of correlation functions

1. Spatially uncorrelated model (black) 3. Second-order auto-regressive model

, lifr=r (SOAR) ( )
Collr=rD = {o ifr - r Collr = =[1+—H'r|__r jexp[——“rl__r j
2. First-order auto-regressive model 4. Gaussian model (red)
(FOAR) (blue) Hr I
_r C,(r—r'|) =exp| —
cutr-rp=eof T : { 21 ]

where L is the correlation length scale




Exercise: Construct a correlation matrix on a one-dimensional periodic domain

Consider a 2D Gaussian model on a plane

—_ ’2
HrZ—LrZ where r € R?

C(r,r') = exp| —

Along the circle of radius a

Ir—r’ * =2a%(1-cos6)

Now define a coordinate x along the

circle
x’—x:a— for —a <x,x'<a
27
then we get |
' X’
Cx, x)=exp| - (1—cos[27z(x2—x)/a]) _
(L/a)

b

4 03 02 01 0 01 02 03 04

X




ure in hPa

press

Ways to define new covariances by transformation

Define a new spatial coordinate
(it

X+ f (Xx) is one-to-one, then

Q(x,x") = P(1(x), f(x'))

IS a new covariance function

in hPa

pressure

horizontal distance horizontal distance

Figure 4.5 Figure 4.6
x/P cross-section of 9 correlations — pressure as Same as Figure 4.5, except for 6 as vertical
vertical coordinate coordinate



Linear transformation

initial

O If L(x) is a linear operator,

1 (X) = L(x) u(x),
then P.=LP, L'

-

-180 -60 60 180

-180 -60 60 180
Correlation
. |

0 02 04 06 08 1.0



Hadamard product

If A and B are two covariance matrices, e.g. Separable correlation functions
then the componentwise multiplication C(x,y,2,x',y".2') = C"(x,y,x,y") C'(z,2')

A oB Is also a covariance matrix
\ J

Self-convolution

: : : = Examples in Gaspari and Cohn (1999
/The self - convolution of dISCOI’l'[InUOlD P P . ( )
_ o = Hadamard product of an arbitrary
functions that goes to zero at a finite covariance function with a compactly
distance, produces compactly - supported function is very useful in
Supported Covariance functions Ensemble Kalman fllterlng to create
\_ % compactly supported covariances




State dependence

then a state - dependent error

&0 = F (1) £,()

o ()= p" in forecast errors
o ()=

\_

" in analysis errors

/If f is a function of the state , \

can be used for data assimilation, if

/

» When formulated this way
state-dependent errors can
be introduced in estimation
theory for data assimilation

e.g. To create a relative error
formulation for observation
error, the relative error is
scaled by the forecast interpolated
at the observation location
( not the observed value! )



To obtain the error statistics o
we use innovations WY T E T
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* Best fit for correlation model: FOAR (First order autoregressive)

C(l, ]) = exp| -

‘ri‘ri‘
L

* Error statistics in terms of land use

Total variance
Forecast error

Correlation
length scale
(km)

Observation
error

Number of sites

FOREST
270
213

412

57
20

COMMERCIAL
355
279

333

76
53

RESIDENTIAL
363

286

334

77
85

AGRICULTURAL

332

276

314

56
47

INDUSTRIAL

400

297

308

103
12
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To compute the Kalman gain we have assumed
¢ B(r| J r-j—obs) - GB (rI)GB (rj—obs) C(rl ! r-j—obs) ~ EB GB (rj—obs) C(r| J rj—obs)
that the correlation is homogeneous

* L — E(rj—obs)

« and since p = 1300 we perform the full inversion of B + R
without data selection



The implementation of an optimum interpolation scheme
Is actually an iterative process until

<OmFi,Oij> B(rI obs 7 Jobs) for 1= |

-~
output assimilation input aSSImIIatlon

* Pass 0 - No assimilation. Comparison of model simulation
with observations in order to get a first guess on
the error statistics

« Pass 1 - Assimilation using Pass 0 error statistics

» Pass 2 — Assimilation using Pass 1 error statistics
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Pass 2 - Final




c) statistical consistency

(OmF)*) -(B+R)
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Monitoring of the error statistics

chi-square <x2> =<VT (B +R)_1V> =p

CHI—SQUARE VS. TIMESTEP (EXP 25)

ASSIMILATION OF AIRNOW SURFACE OZONE IN CHRONDS ¥WI.5 AUGUST 1004

CHI-SQUARE
37 f CHI-SOUARE MEAN = 0. GF |

SN
/] | ¥

LI e e o e o B e e o LA B o e e e B S A e LA e T
I 100 200 300 400 500 EOD
TIMESTEP



SPECTRAL DENSITY OF CHI—SQUARE (EXP25)

IMPACT OF ASSIMILATION OF AIRNOW SURFACE OZONE DATA IN CHRONOS W2.5 (August2004)

8] 10 20 30 40 5O &0 70 g0 30
PERIOR (HOUR)

NOTE: IMNDEPENDAMT DATR USED FOR VERIFICATION

Power spectrum of y? gives further insights on the
weaknesses of the assimilation system.
* e.g. meteorological analyses are refreshed each 24 hours
 e.g. when error stat. were updates each 3 hours we saw
a peak at 3 hours (results not shown)



d) verification

To verify against independent observations we use

« 1/3 of observations for the verification (red)

« 2/3 of observation used to produce the analysis (blue)

» rederive the error statistics (because the background error
may have changed)

X T T B L T, B0 B

Ao T

/ Staticns psed for oml ./
7 1 1 [

Kugust 2002

oot

W | 1000 ™, e moW




e) background error vertical correlation
IMPACT OF CHANGING VERTICAL CORRELATION LENGTH

LESTMILATICHN OF ATRNOW SURFACE OZCNE
CHERONOS MODEL V2.5 (7-25 RUG 2004)

AVE 24HR ETD DRV

187
1?-5
16;
15%
14;
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] 0-P
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] - - - o-2

11

]
m
ii]
u

10_- T 1 1 T

¥ 500 1060 1500 2000 2500 3000 3500 4000 4500 EBOOC BEOO0 6000
VERTICAL DISTANCE (meters)

* The minimum error variance is achieved when the vertical

T
6500

correlation length scale is 900 m — i.e. correlation reaches zero

just above the PBL.



4. Other species

Error statistics during NARSTO 1995 campaign

August July 1995 July 1995 July 1995
2002, O, O, NO, NO
N=623 N =224 N=25 N=39
Total 194 292 76 69
variance
Forecast 134 194 21 11
Error var
Obs error 60 98 55 958
variance
Obs weight | 0.72 0.68 0.48 0.22
Horiz corr 310 370 690 ?7 122 ?7?
lenth

- 700 few observations to construct horizontal error statistics




Impact of assimilating ozone on other species

MODEL VALUE FOR O CHRONOS MODEL

CHRCNOE V240 14-30 ADGUET 2002
MOLECULAR OXYGEN

MODEL *{ . OEV
[

B A RO BN LAY I IS ML BN R R
102 3 4 § & 7 8 85 10 11 13 13 14 15 16 1T 18 19 20 21 23 23 23

HOUR (Z)
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MODEL VALUE FOR NO (PPB) CHRONOS MODEL
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5. Prediction
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6. Environmental impact

* Dry deposition has an impact on crops and vegetation on a seasonal time scale
AVG. FLUX OF OZONE TO SURFACE : VD*[ozone] — Aug. 7-30 2002
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7. How important is chemistry in assimilation and monitoring

No chemistry
BIAS AND STD. DEV. OF O—P AND O-A
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With chemistry
BIAS AND STD. DEV. OF O—=P AND O-A
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In summary

» chemistry + free mode (no assimilation)
- std 20 ppb
- bias 2 ppb

* no chemistry + assimilation
-std ~12 ppb
- bias a) ~ 1 ppb in analyses
b) large daytime (~10 ppb) in 1hr forecast

« chemistry + assimilation
-std ~14 ppb
- bias ~ 3 ppb (both analysis and forecast)



Some conclusions

 The reduction of error variance is largest when there is no
chemistry. The bias is nearly zero in monitoring mode.
The addition of chemistry reduces the effect of observations
I.e. more resilient in reducing the error variance and in
adapting the bias.

* The forecast and observation error variances are of comparable
size.

* Reduction of forecast error variance due to surface observations
is about one half,

» The impact of (univariate) assimilation of surface ozone
observations on prediction last about 3hrs (e-folding time),
creating very little corrections on other species.



* the vertical correlation length scale was found by
minimizing the forecast error variance. Although barely
detectable (i.e. observability ?), it indicates that correlation
should penetrate just above the PBL.

» surface flux of ozone with/without assimilation of observations
is quite different on a seasonal time scale and may have
an impact on the assessment of the environmental impact
of ozone



8. Ongoing and future research

"« Online chemistry with the operational NWP model GEM (Global Environmental )

Multiscale model)
» Extend the control variables of the operational 3D and 4D Var to include
Y atmospheric compounds concentrations and surface fluxes.

)

Dynamics and physics
* Global Environmental Multiscale (GEM) model
operational NWP model at Meteorological Service of Canada

semi-Lagrangian, adjoint + TLM
global uniform/variable resolution /

» stratospheric version .' "
hybrid vertical coordinate o — p - 2 )
80 levels, top 0.1 hPa \
240 x 120 (1.5 degree)

» radiation, k-correlated method (Li and Barker 2004) uses as input
H,O, CO,, O;, N,O, CH,, CFC-11, CFC-12, CFC-113, CFC-114
sulfate, sea salt, and dust aerosols.

» non-orographic gravity wave drag (Hines)



data assimilation system

» Stratospheric assimilation inherits the characteristics of the operational
assimilation 3D Var and 4D Var

— AMSU-A (channel 10-14 added) and AMSU-B microwave channels
— GEOS infrared radiances

— Data quality control with BG check and QC-Var
— Conventional meteorological data

» Extension of operational 3D Var with an arbitrary number of of chemical
species

* Chemical species BUFR format proposal to WMO (using IGACO chemical
parameters + other AQ species)

chemistry

» Chemical interface to GEM (next official release)

» Emissions handled through the physics interface (next year)



» Kinetic PreProcessor (KPP) symbolic computation to generate
production and loss terms
jacobian, hessian, LU decomposition matrices.

» Look up J values and online J calculation
(MESSy, Landgraf and Crutzen 1998).

* All species advected and gas phase chemistry solved
with Rosenbrock or Fully implicit chemical solver (45 min time step).

* Implementation of TLM and adjoint starting this fall.

« Adding surface fluxes as control variables (Next year)



Computational Issues

= Distributed computing / distributed memory

GCCM OpenMP , MPI
VAR-CHEM  OpenMP , MPI (underway) , Analysis splitting

= Transport

Can save computation in semi-Lagrangian advection transport
 upstream point (D or M) is the same for all advected species

X X o

A

X x M X
O
D

X X X

« interpolation weights C,(x) are the same for all advected sp4ecies

| 4__(X_Xk)

4 P
e.g. cubic Lagrange interpolation ¢@(X) = ZCi(X) @, with weights C,(x) = %
= (Xi o Xk)

k#i




Data assimilation issues

Cross-error covariance models
e.g. Temperature-Ozone

« Because the ozone production
rate increases with decreasing
temperatures, in regions
dominated by photochemistry
(above 35 km) a negative A
correlation between temperature Ozone [ppmy]

. mm
and ozone would occur i e

» Haigh and Pyle (1982), Froideveau
et al. 1989, Smith 1995, Ward 2002

0.]=B exp(g)



» For data at a given level, perturbations can fit an expression
of the form

C
= 5T
o] T

with a correlation that can be up to 0.92 above 42 km, and
increase linearly from zero to 0.92 between 37 km to 42 km.

* Cross error coupling in 3D Var

W | 0 0 0 O 1
)4 E I 0 0O Xu
MT,p)|=|N O I 0 0|, Pg)
Ing O 0 0 I O Ing
In[O, ] M 0 F 0 I){In[o,]



Not all chemical species are observed

Analysis splitting — only observed variables in control vector

-~

\_

The problem of minimizing

2lu—-u’

~

J(X,U)=£[X_ij[PXfx IDXf”j(x—xf u—uf)+%(Y—H(x))TR1(Y—H(x))

Pf Pf

uu

with respect to x and u is mathematically equivalent to minimizing
J(x) = %(x—xf JPi(x—x")+ %(y— H(x))' R™*(y — H(x))
followed by the update (Ménard et al. 2004)
ut=u’ +P, (P )" [ —x")

/

4D Var extension

Uses same solver as in 3D Var tangent linear integration

1 T 1 l T ‘
3@ = le-¢"Tle-¢")+ S ly- HILEN Ry - HLE)
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