Estimation of surface emissions

Claire GRANIER

Service d'Aeronomie/IPSL, Paris, France Max-Planck Institute for Meteorology, Hamburg, Germany CIRES/NOAA Aeronomy Laboratory, Boulder, USA

From MPI – Meteorologie

Where are emissions needed:

• Forecast of the atmospheric composition, campaigns (GEMS, AMMA)

- \rightarrow Wide range of chemical species
- \rightarrow high spatial and temporal resolution
- Global scale, long-range transport
 - \rightarrow limited number of chemical species
 - \rightarrow moderate spatial and temporal resolution
 - \rightarrow long-term variation (a few decades)
 - \rightarrow need some coupling emissions/meteorological conditions

 Climate studies: impact of climate on emissions and of emissions on climate

- \rightarrow long-lived species, aerosols and a few ozone precursors
- → emissions models or algorithms to take into account land-use changes and human-related changes
- \rightarrow past/future realistic scenarios (decades-century)

Outline

Technological emissions

- \rightarrow quantification of emissions
- \rightarrow available inventories
- \rightarrow main uncertainties
- Biomass burning emissions
 - \rightarrow quantification of emissions
 - \rightarrow satellite observations
 - \rightarrow main uncertainties
- Natural emissions
 - \rightarrow hydrocarbons
 - \rightarrow methane
 - →lightning
 - \rightarrow aerosols

Conclusions

EMISSIONS OF ATMOSPHERIC TRACE COMPOUNDS

KLUWER ACADEMIC PUBLISHERS AGLO 18

CLAIRE GRANIER, PAULO ARTAXO AND CLAIRE E. REEVES (EDS.)

This book was conceived during the workshop "Emission of Chemical Species and Aerosols into the Atmosphere" which bok place in Paris in June 2001, involving many experts who presented a number of state-of-the-art papers. Many of these papers are presented in this book where they are set in the wider context of other published work, providing comprehensive documentation of many aspects of this field of Earth science. The book is divided into 12 chapters, most dealing with inventories of emissions related to anthropogenic emissions or biomass burning, emissions from vegetation and soils, emissions of mineral and sea-saft aerosols, and emissions of sulphur compounds from the occans. The final three chapters show how atmospheric observations have been used to improve our knowledge of emissions, such as the use of isotopes, large observation networks as well as the latest inverse modelling techniques and their application to surface and satellite observations. EMISSIONS OF ATMOSPHERIC

ADVANCES IN GLOBAL CHANGE RESEARCH

EMISSIONS OF ATMOSPHERIC TRACE COMPOUNDS

EDITED BY CLAIRE GRANIER, PAULO ARTAXO, CLAIRE E. REEVES

KLUWER ACADEMIC PUBLISHERS

Several figures coming from this book: Emissions of Atmospheric Trace Compounds Editors: C. Granier, P. Artaxo, and C. Reeves

A

Technological emissions:

Species considered:

- ozone precursors: CO, CH4, NOx, hydrocarbons
- aerosol/aerosol precursors: BC, OC, SO2
- non-chemically active species: CO2, N2O, CFCs,

HFCs, HCFCs, heavy metals, POPS, ...

General equation:

Emission = $SA_i EF_i P1_i P2_i$

 A_i = Activity rate for a source (ex: kg of coal burned in a power plant...) EF_i = Emission factor : amount of emission per unit activity (ex: kg of sulfur emitted per kg burned P1_i, P2_i, ... = parameters applied to the specified source types and

species (ex: sulphur content of the fuel, efficiency, ...)

Emissions calculated for different categories of emissions

Sources of anthropogenic emissions

Main IPCC categories (as used in UNFCCC reporting):

- 1. Energy (combustion / production)
- 2. Industrial processes
- 3. Solvents/other product use
- 4. Agriculture
- 5. Land-Use Change and Forestry (LUCF)
- 6. Waste
- 7. Other

Note: Other UN Conventions also starting to use this

Reference: http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ri.pdf

From Olivier, April 2005

ource categories

Energy Industry -Power generation -Other transformation sector -Residential, commercial, other -Road transport -Non-road transport -Air transport -International shipping -Coal production -Oil production -Gas production	r Industrial processes -Iron and steel -Non-Ferro -Chemical industry -Building materials -Food -Solvents -Misc.	-Enteric	IPCC EME EDG RAIN Indiv	<u>fications</u> P/CORINAIR AR
From Olivier, Ap	ril 2005			Waste - Landfills - Wastewater treatment - Human wastewater disposal - Waste incineration - Misc. waste handling

Where are the statistical data coming from?

• International organizations:

- UN statistics (http://unstats.un.org/unsd//)
- UNO: FAO, UNEP
- World Bank: (http://www.worldbank.org/data/)
- Regional and National Organizations:
 - International Energy Agency: IEA: (http://www.iea.org)
 - OECD (http://www.oecd.org)
 - EUROSTAT: (http://epp.eurostat.cec.eu.int)
 - US EPA (http://www.epa.gov)
- Sectoral institutions
 - International Iron and Steel Institute:http://www.worldsteel.org
 - International Aluminium Institute: http://www.world-aluminium.org
 - International Rice Research Institute,

and many others

Uncertainty in emissions mapping

Most data reported at country level (or also: county, district, ...) but model studies require gridded data \rightarrow requires proxy

Questions:

- How to assess the applicability of a selected type of grid map to a particular activity distribution:
- how good a proxy is the theme of the map for the source category (e.g. population density for industrial emissions)

Quality of the grid map itself:

- how good a proxy is the selected map for the theme
- how accurate are population maps (non available for the most recent years)
- are spatial distributions equal for all gases of a source (example: CO in road transport)

Examples of inventories

- Partial spatial coverage:
 - NAPAP, CORINAIR, EMEP, RAINS-ASIA, ACESS, TRACE-P
 - UN-ECE, UNFCCC (no spatial information)
 - Official national inventories, sometimes time series

• Global coverage:

- GEIA (anthropogenic e.g. NOx, SO2, NMVOC; natural e.g. S-volcanoes, NMVOC-soil, vegetation) (1985-1990)
- EDGAR 3 (anthropogenic GG 1970-1995; other 90-95) + POET (1990-2000)
- EDGAR-HYDE 1.3 (all 1890-1990)
- RETRO (1960-2000)
- AEROCOM (2000) particles only
- IEA (fuel CO2 1971-2001, country level)

• Other inventories

- In scientific literature (source-specific, e.g. biomass burning, or country-specific, or only global totals)
- In scientific literature (new compounds, e.g. aerosols)
- Other national inventories (e.g. GG in US-CSP)

Regional inventories overlaid on the default global inventories of SO2 (top panel) and NOx.(bottom panel) for the GEIA 1985 inventories.

Fron Benkovitz et al., 2003

European emissions of NOx in 1995 at 50 km grid resolution (Mg as NO2) (from EMEP)

emep/msc-w

European emissions available from http://webdab.emep.int/

and MPIC-AC, Mainz (D), and stores global emission inventories of direct and indirect greenhouse gases from anthropogenic sources including halocarbons and aerosols both on a per

country and region basis as well as on a grid.

Global distribution of NOx (top) and CO (bottom) anthropogenic emissions in 1995. Source: EDGAR 3.2

Global emission database (EDGAR) compared to country data (EMEP)

- SO₂ emission factors update needed for EDGAR in countries with recently implement control technologies

- activity data seems comparable

based on Olivier, 2005

The most uncertain emissions: anthropogenic emissions in Asia and their recent changes

Research group	Base year	Domain	Species	Grid size, degree	References
ACESS	2000	All Asia	SO ₂ , <u>NO</u> _x , CO, NMVOC, BC, OC, NH ₃ , CH ₄	1	ACESS (2002)
FRSGC	1995	All Asia	SO ₂ , <u>NO</u> _x , CO, NMVOC, BC, NH ₃ , N ₂ O, CH ₄	0,5	Ohara et al. (2001), Yan et al. (2002)
RAINS-ASIA	1995	All Asia	SO_2	1	IIASA (2001)
Streets et al.	1985- 1997	All Asia	SO_2 , NO_x	1. <u>-</u> 1	Streets et al. (2001, 2002)
<u>Klimont</u> et al.	1995	East Asia	SO ₂ , NO _x , NMVOC, NH ₃	1	Klimont et al. (2001)
Murano et al.	1994- 1996	East Asia	SO ₂ , <u>NO</u> _x , NMVOC, NH ₃	0,5	Murano et al. (2002)

Statistical data: increase in Asian emissions up to 2000, and a decrease afterwards

NO2 tropospheric column in China

From Richter, Burrows, Nuess, Granier and Niemeier, Nature, Sept 1, 2005

Uncertainty on aerosols emissions Range of estimated emission factors for BC (g/kg)

Cooke - Streets (JGR, 1999 (Trace-P; China)

• 1.39 to 2.28 - 0.12*

Devel. to Undev.

- Hard Coal residential 1.39 to 2.28
- Lignite residential
- Coal industrial
- Diesel transport
- Gasoline transport

- 2.50 to 4.10 3.6*
- 0.15 to 1.10 0.003-0.33
- 2.0 to 10.0 1.1
- 0.03 to 0.15 0.08

* Indicates EF_{PM} from Beijing EPA

BC Emissions Constant EFs

Comparison of BC emissions using

An other issue: NMVOC speciation, not generally given in inventories

From EDGAR 2 version No speciation in EDGAR 3

Main group	code	Group
Alkanols (alcohols)	v01	Alkanols (alcohols)
Alkanes	v02	Ethane
	v03	Propane
11	v04	Butanes
	v05	Pentanes
	v06	Hexanes and higher alkanes
Alkenes/alkynes (olefines)	v07	Ethene (ethylene)
u	v08	Propene
n.	v09	Ethyne (acetylene)
u.	v10	lsoprenes : <u>no anthropogenic</u> <u>sources</u> *
u	v11	Monoterpenes : <u>no anthropogenic</u> <u>sources</u> *
u	v12	Other alk(adi)enes and alkynes (olefines)
Aromatics	v13	Benzene (benzol)
	v14	Methylbenzene (toluene)
	v15	Dimethylbenzenes (xylenes)
11	v16	Trimethylbenzene
	v17	Other Aromatics
Esters	v18	Esters
Ethers	v19	Alkoxy alkanes (ethers)
Chlorinated hydrocarbons	v20	Chlorinated hydrocarbons
Alkanals (aldehydes)	v21	Methanal (formaldehyde)
	v22	Other alkanals (aldehyedes)
Alkanones (ketones)	v23	Alkanones (ketones)
Carboxylic acids	v24	(Alkanoic) acids
Other NMVOCs	v25	Other NMVOC (HCFCs, nitriles, etc.)

Detailed data on hydrocarbons speciation: from the UK NAEI inventory

http://www.aeat.co.uk/netcen/airqual/naei/annreport/annrep97/naei97.html (One file with > 500 compounds)

Emissions of the 50 most significent NMVOCs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1,1,1-trichloroethane								0.39				14.93	0.12	15
1,2,4-trimethylbenzene	0.00					0.38	0.03		0.42	2.35	10.71	9.14		23
1,3,5-trimethylbenzene	0.00					0.15	0.03		0.42	0.57	3.34	3.33		8
1-butanol								0.90				7.10	0.01	8
1-butene	0.00			0.74		0.13	0.03	0.81	0.42	2.19	2.65			7
1-propanol								1.12				19.26	0.07	20
2-butanone								1.84				9.31	0.03	11
2-butene						0.21	0.00	0.81		3.75	6.88	in states		12
2-methylhexane				0.03		0.16	0.00			1.35	5.17	0.22		7
2-methylpentane	0.00			1.65		0.45	0.12		1.76	4.44	7.74	0.27		16
2-pentene						0.10	0.00			3.46	3.42			7
2-propanol								2.20				20.07	0.03	22
3-ethyltoluene	0.00					0.20	0.02		0.42	0.94	4.68	2.31		9
3-methylpentane	0.00			0.69		0.28	0.06		0.92	2.96	5.38	0.25		11
4-ethyltoluene	0.00					0.20	0.03		0.42	0.94	4.68	0.94		7
4-methyl-2-pentanone							120001-	1.14				10.40		12
acetone	0.04	0.07	0.08			0.22	0.17	5.44	1.68		0.33	12.85	0.00	21
acetylene	0.02	0.02	0.53			1.26	0.27	0.86	2.69		19.18			25
benzene	2.95	0.15	0.96	0.56		1.20	0.17	7.26	1.70	1.46	21.29		0.08	38
butane	3.26	0.48	0.75	100.49		0.85	0.20	16.58	3.36	29.41	14.38	23.32	0.81	194
butyl acetate								0.11				9.76	0.04	10

Biomass burning emissions :

Are they really that important?

Global budget of CO [from WMO, 1998]:									
Source	es:								
	Fossil fuels and industry	300-500							
	Biomass burning	300-700							
	Oceans 20-200								
	Vegetation 20-200								
	CH4 oxidation	400-800							
	NMHC oxidation	200-600							
Total		1240-3000							
Sinks:									
	Reaction with OH	1400-3000							
	Soil uptake	100-600							
	Removal in the stratosphere	100							
Total		1600-3700							

From C. Liousse, 2003

Calculation of emissions from biomass burning

 $[\mathbf{P}]_{lm} = [\mathbf{A}]_{lm} \times [\mathbf{B}]_{lm} \times [\mathbf{CF}]_{lm} \quad [\mathbf{EF}]_{lm}$

A is the burned area per month at location l (m² month⁻¹)

B is the fuel load (kg m⁻²) expressed on a dry weight (DM) basis within each grid l

CF is the fraction of available fuel which burns (the combustion factor)

EF is the emission factor in gram CO₂ per kilogram of dry matter burned

Species	Savanna and grassland	Tropical forest	Extratropical forest	Biofuel Burning	Charcoal making	Charcoal burning	Agricultural residues
CO,	1613±95	1580±90	1569±131	1550±95	440	2611±241	1515±177
CO	65±20	104±20	107±37	78±31	70	200±38	92±84
CH4	2.3±0.9	6.8±2.0	4.7±1.9	6.1±2.2	10.7	6.2±3.3	2.7
total nonmethane	3.4±1.0	8.1±3.0	5.7±4.6	7.3±4.7	2.0	2.7±1.9	7.0
hydrocarbons	(/						
C_2H_2	0.29±0.27	0.21-0.59	0.27±0.09	0.51-0.90	0.04	0.05-0.13	0.36
C_2H_4	0.79±0.56	1.0-2.9	1.12±0.55	1.8±0.6	0.10	0.46±0.33	1.4^{c}
C_2H_6	0.32±0.16	0.5-1.9	0.60±0.15	1.2±0.6	0.10	0.53±0.48	.97
C_1H_4	0.022±0.014	0.013	0.04-0.06	0.024		0.06	0.032°
C ₃ H ₆	0.26±0.14	0.55	0.59±0.16	0.5-1.9	0.06	0.13-0.56	1.0'
C ₁ H ₈	0.09±0.03	0.15	0.25±0.11	0.2-0.8	0.04	0.07-0.30	0.52°
isoprene	0.020±0.012	0.016	0.10	0.15-0.42	in and	0.017	0.05
terpenes	0.015	0.15t	0.22	0.15*		0.0	0.015
benzene	0.23±0.11	0.39-0.41	0.49±0.08	1.9±1.0		0.3-1.7	0.14
PAH	0.0024	0.025	0.025	0.025		0.025	0.025
methanol	1.3	2.0	2.0±1.4	1.5	0.16	3.8	2.0"
formaldehyde	0.26-0.44	1.4	2.2±0.5	0.13±0.05		2.6	1.4°
acetaldehyde	0.50±0.39	0.65	0.48-0.52	0.14±0.05	-	1.2	0.65
acetone	0.25-0.62	0.62	0.52-0.59	0.01-0.04	0.02	1.2	0.63
2-butanone	0.26	0.43	0.17-0.74	0.03-0.06		0.83	0.44
formic acid	0.7	$I.I^c$	2.9±2.4	0.13	0.20	2.0	0.22
acetic acid	1.3	2.1°	3.8±1.8	0.4-1.4	0.98	4.1^c	0.8

missions factors: based on measurements in different countries, and campaigr

Compilation by Andreae and Merlet, 2001

For many years, most of the inventories of biomass burning emissions based on climatology and statistics from different countries.

Widely used inventory: Hao et al., 1994 Monthly average, 5x5 degree resolution

CO2 emissions July In 1.e10 molec/cm2/s

Biomass burning emissions :

Significant progress in the past few years, through the use of satellite data

- \rightarrow fire counts
- \rightarrow burned areas

Global scale fire products derived from EO systems (from Gregoire, 2005)

Existing

Under development

Active Fires ("hot spots")

- □ IGBP-JRC <u>Global Fire Product</u> (GFP)
- ESA <u>World Fire Atlas</u> (WFA)
- □ <u>TRMM</u>
- □ NASA <u>MODIS Active Fire</u>

Burnt Areas

□ JRC et al., <u>Global Burnt Area 2000</u> (GBA2000) □ ESA <u>GLOBSCAR</u> Active Fires ("hot spots")

ESA et al., <u>GLOBCARBON</u>

Burnt Areas

□ JRC et al., <u>VGT4Africa</u>
□ JRC et al., <u>GEOLAND</u>

Satellite derived global fire products (from Gregoire, April 2005)

Product name EO system product type	Resolution sensor product	Time step sensor product	Covera ge	Period	Source	Documentation
TRMM TRMM-VIRS fire (day & night)	2.2 km 0.5 degree	day month	+/- 40° (from equator)	Jan. 98 to mid-04	NASA	Giglio <i>et. al.</i> 2000, IJRS(21) http://earthobservator y.nasa.gov/Observato ry/Datasets/fires.trmm .html
WFA ERS-ATSR,AATSR ENVISAT-AATSR fire (night)	1 km 1 km	day day	Globe	July 1996 to now	ESA	http://shark1.esrin.esa .it/ionia/FIRE/AF/AT SR/
IGBP-GFP NOAA-AVHRR fire (day)	1 km 1 km	day day & 10- day	Globe	April 1992 to Decembe r 1993	JRC	Dwyer <i>et al.</i> , 1999, J. Biogeography (27) From May 1 st : http://www- gvm.jrc.it/tem/
MODIS Active Fire AQUA,TERRA- MODIS	250 m lat long position	day day	Globe	~ 2001	MODIS team	http://rapidfire.sci.gsf c.nasa.gov/

CO2 emitted by forest and savana fires in 1997 in 1.e10 molec cm-2 s-1 - September

← September 1997

✓ September 1998

CO2 emitted by forest and savana fires in 1998 in 1.e10 malec cm-2 s-1 - September

1x1 degree distribution of biomass burning Emissions of CO2

Based on ATSR fire counts

Forests fires CO2 emissions

CO2 emitted monthly by forest fires.

EDGAR 1997: EDGAR-3

JF-CG: emissions based on ATSR satellite data developed by J.F. Lamarque and C. Granier

CO2 emitted monthly by savanna fires. EDGAR 1997: EDGAR-3

JF-CG: emissions based on ATSR satellite data developed by J.F. Lamarque and C. Granier

CO2 emitted yearly by forest and savanna fires 1997_edg: EDGAR-3

JF-CG: emissions based on ATSR satellite data developed by J.F. Lamarque and C. Granier

Satellite derived global burnt area products (from Gregoire, April 2005)

roduct name O system oduct type	Resolution sensor product	Time step sensor product	Coverage	Period	Source	Documentation
BA2000 POT-VGT Irnt area	1 km 1 km ²	day month	Globe	Nov. 99 to Dec. 00	JRC	Tansey et <i>al.</i> , 2004, JGR(109) & Climatic Change (67) http://www- gvm.jrc.it/fire/gba2000/index.htm
LOBSCAR RS-AATSR Irnt area	1 km 1 km ²	day month	Globe	2000	ESA	Simon <i>et al.</i> , 2004, JGR(109) http://shark1.esrin.esa.it/ionia/FIRE BS/ATSR/
BA1982-1999 OAA-AVHRR ırnt area	5 km 8 km ²	day week	Globe	1982 to 1999	JRC	Carmona-Moreno <i>et al.</i> , 2005, Global Change Biology (in press)

GWEM: Global Wildland fire Emission Model

From Hoelzemann et al., JGR, 2004

calculating the emissions per gridbox

$$M(X)_{m} = \sum_{k=1}^{n} EF_{k}(X) \times A_{m} \times \boldsymbol{b}_{k} \times AFL_{k}$$

- **M (X)** _m : amount of species X emitted per month **m**
- n: number of ecosystems (5)
- EF_k(X): emission factor for species X per ecosystem
- A i: area burnt per month
- **ß** _k: combustion efficiency for ecosystem k
- AFL _k: available fuel load per ecosystem

$$AFL_{k} = \sum_{t=1}^{9} fc_{t} \times \sum_{p=1}^{5} \boldsymbol{c}_{t,p} \times \boldsymbol{m}_{t},$$

- fc _t: fractional cover of PFT t per gridbox
- t: number of PFT's (9)
- p: number of carbon pools (5)
- $\mathbf{C}_{t,p}$: susceptibility factor m _{t,p} : dry matter per PFT and carbon pool
GWEM-1.3 results: regional totals

Inter-comparison of global fire products: -World Fire Atlas (WFA) - GLOBSCAR - GBA2000

Boschetti et al., 2004 *Geophy. Res. Letters* Vol. 31

(from Gregoire, April 2005)

Example of comparison between an inventory based on fire pixel counts (ACESS) and another on Spot burnt area data (ABBI) (from Liousse, April 2005)

BC (ACESS) 1-10 March 2001

BC (ACESS) 11-20 Ma rch 2001

BC (ACESS) 20-31 Ma rch 2001

BC (ACESS) 1-10 April 2001

BC (ABBL) 1-10 April 2001

ACESS/ABBI (Michel et al. 05) (TRACE P and ACE ASIA period)

Satellite derived fire products: under development (from Gregoire, April 2005)

Product name EO system product type	Resolution sensor product	Time step sensor product	Coverage	Period	Source	Documentation
GLOBCARBON ERS, ENVISAT, SPOT- ATSR,AATSR,VGT fire (day & night) burnt area	1 km ???	day month	Globe	1998- 2003	ESA	http://dup.esrin.esa.it/pro jects/summaryp43.asp
VGT4Africa SPOT-VGT burnt area	1 km 1 km ²	day 10 days	Africa	from 2005	JRC	from May 1 st : http://www- gvm.jrc.it/tem/
<mark>GEOLAND</mark> = GLOBCARBON	1 km ???	day month	Africa & Eurasia	1998- 2003	JRC	from May 1 st : http://www- gvm.jrc.it/tem/

Importance of the injection height

Average tropical forest and savanna fire: 2000m Crown fires in the boreal forests: around 7500 m

Main uncertainties:

- \rightarrow Large difference between the different products used
- \rightarrow Amount of biomass burned: large uncertainty in vegetation maps
- \rightarrow Emission factors: present a very large spatial variability:
- \rightarrow What about past/future emissions
- \rightarrow How to define the vertical profile of emissions

Work is under way for the improvement of products:

- AIMES/IGBP/QUEST workshop in October 2005
- GEIA/ACCENT workshop in December 2005

Natural emissions:

For the past years, the focus has been mostly on:

- \rightarrow biogenic hydrocarbons: isoprene/terpenes and other compounds
- \rightarrow CH4 from wetlands
- \rightarrow NOx from soils
- \rightarrow NOx from lightning
- \rightarrow dust, sea-salt
- \rightarrow sulfur and sulfates from volcanoes
- \rightarrow etc...
- ➔ Inventories for specific years
- → climatological inventories
- emissions models

Isoprene Emissions are generally thought to contribute to O₃ production over the eastern United States [*e.g.Trainer et al.*, 1987; *NRC* 1991]

Vegetation changes \rightarrow Impact on O₃?

Importance of having emissions models for hydrocarbons From A Fiore Harvard

Vegetation Emissions: chemical species

Individual compounds

Methanol, acetaldehyde, acetone, ethene, ethanol, α pinene, β -pinene, d-carene, hexenal, hexenol, hexenylacetate, propene, formaldehyde, hexanal, butanone, sabinene, limonene, methyl butenol, butene, β carophylene, β -phellandrene, p-cymene, myrcene, Formic acid, acetic acid, ethane, toluene, camphene, terpinolene, α -terpinolene, α -thujene, cineole, ocimene, γ -terpinene, bornyl acetate, camphor, piperitone, linalool, tricyclene We should estimate individual compounds because controlling factors can differ

Eastern U.S.	Western U.S.	Eastern Canada	Western Canada
Pinus taeda	Pseudotsuga menziesii	Populus tremuloides	Picea spp
Acer rubrum	Pinus ponderosa	Picea spp	Populus tremuloides
Quercus alba	Juniperus osteosperma	Abies spp	Pinus banksiana
Liquidambar styraciflua	Pinus contorta	Pinus banksiana	Abies spp
Acer saccharum	Tsuga heterophylla	Thuja occidentalis	Tsuga spp
Quercus rubra	Abies concolor	(1969) 	ACADO - 104 METEO
Pinus elliottii	Picea engelmannii	Northern Mexico	Southern Mexico
Liriodendron tulipifera	Abies grandis	Pinus durangensis	Quercus resinoa
Populus tremuloides	Pinus edulis	Pinus arizonica	Pinus oocarpa
Quercus virginiana	Abies lasiocarpa	<i>Quercus</i> spp	Acacia spp

Bold = high VOC emissions Green: temperate adapted

Red: species adapted to warm sunny climates Blue: species found in cool or mountain climates Model of Emissions of Gases and Aerosols from Nature (MEGAN): Guenther et al. (NCAR) Emission Rate= EF x EA x LP

Emission Rate: Net canopy emission to the above-canopy atmosphere

Emission Factor (EF): Landscape average net canopy emission to the above-canopy atmosphere at standard conditions

Emission Activity (EA): Nondimensional factor that accounts for variations in primary emissions (equal to unity at standard conditions)

Loss and Production (LP): Nondimensional factor that accounts for variations in canopy loss and production rates (equal to unity at standard conditions)

Model of Emissions of Gases and Aerosols from Nature (MEGAN) driving variables

from A. Guenther, avril 2005

The global distribution of ecoregions as assigned by the World Wildlife Fund ecoregion scheme. Each color represents a different ecoregion (over 850 ecoregions are assigned to the global land area) (Based on Olson et al., 2001). For more information, visit http://www.worldwildlife.org/ecoregions.

MEGAN Plant Functional Types

Broadleaf	Global EF Average (range)	Global Area	Global Isoprene
Trees	9.6 (0.1 - 30)	16-39%	58.3%
Shrubs	9.5 (0.1 – 30)	16-24%	34%
Fineleaf Evergreen Trees	2.7 (0.01 – 13)	9-20%	5.5%
Fineleaf Deciduous Trees	0.6 (0.01 – 2)	1.3-4%	0.2%
Grass	0.5 (0.005 – 1.2)	17-39%	1.8%
Crops	0.05	8-37%	0.2%

General species vegetation inventiones and

emission factors: Southeastern U.S.

Annual emission (TgC yr ¹)	Compounds
250-750	Isoprene
50-250	methanol, α-pinene
10-50	acetaldehyde, acetone, β-pinene, d-carene, ethanol, ethene, hexenal, hexenol, hexenyl-acetate
2-10	propene, formaldehyde, hexanal, butanone, sabinene, limonene, methyl butenol, butene, b-phellandrene, p-cymene, myrcene
0.4 – 2	formic acid, acetic acid, ethane, toluene, camphene, terpinolene, a-terpinolene, a-thujene, cineole, ocimene, g-terpinene, bornyl acetate, b-carophylene, camphor, piperitone, linalool, tricyclene

Total emitted for different VOCs

Issue still remaining: distribution of vegetation: Example: calculation of leaf area index

From Ganzeveld April 2005

What about the availability, quality and consistency of input databases required to constrain exchange models?

LAI inferred from satellite data

- ✓ Surface cover January
- Land use management
- ✓ Soil properties
- ✓ Activity data

From Ganzeveld, April 2005

Vegetation and wet skin fraction

Grom Ganzeveld, April 2008

Dry deposition: required input datasets

Dry deposition in <u>online</u> or <u>offline</u> models

Databases for online and offline models

- Land cover: biomass (Leaf Area Index), roughness (z₀), canopy height
- Soil properties: e.g., pH, organic matter

And additional one's for offline models

- Surface cover fractions: Vegetation, wet skin, snow, bare soil
- Soil moisture
- Snow depth
- 2m dew point temp.
- Forest fraction
- field capacity, etc.....

From Ganzeveld, April 2005

	Biogenic and other continental sources	Biomass Burning	Fossil Fuel Burning	Ocean	Photo- chemistry
CO	significant	major	major	minor	major
CH ₄	major	significant	major	minor	no
N ₂ O	major	significant	significant	significant	no
NOx	major	major	major	?	minor
isoprene	major	?	?	?	no
DMS	minor	?	no	major	no
SO ₂	major*	minor	major	no	important
dust	major	no	no	no	no
sea-salt	no	no	no	major	no
ozone	no	no	no	no	major

*: emissions from volcanoes

ACCENT access: www.accent-network.org GEIA access: www.geiacenter.org (end of August)

GEIA/ACCENT Emissions

A cooperative effort

- 0.0	0.000		and the second
Pro	oct	dosci	ription
		ucau	DUOIL

Emission Data portal

Workshops & meetings

ACCENT web portal

GEIA project

Web links

Contacts

Home

GEIA/ACCENT Emission Data Portal

The <u>GEIA</u> /<u>ACCENT</u> data portal is composed of different inventories at global or regional scales, listed in the table below. It provides gridded data for three emission categories:

anthropogenic (technological + biofuel + agriculture waste burning)

- biomass burning from wild lands (forest fires + savannah fires)
- natural: vegetation and oceans emissions

Important notice : When using any data from the GEIA/ACCENT web portal, we request that you acknowledge the authors of the datasets of each inventory (as indicated in each inventory's documentation), as well as the GEIA/ACCENT database activity (see Project description)

If you want to have access to more emissions categories, or higher resolution, go to the inventory home web site by clicking on the inventory "home site URL"

Inventory	Coordinating Institute(s)	Home sites URLs (for detailed inventory)
POET	RIVM / IASB / Service d'Aéronomie(CNRS)	http://www.aero.jussieu.fr/projet/ACCENT/POET.php
RETRO	MPI-Met	http://retro.enes.org/emissions
GEIA v.1	GEIA Network	http://www.geiacenter.org

News on Availability : For now, emission data from the POET database are available for a large list of species and for many years. GEIA version 1 inventories are also accessible by the link in the previous table. For now, the RETRO CO and NOx data are available on this portal (other species are coming soon).

Links to other Emission Inventories or Databases

Inventory	Coordinating Institute(s)	Home sites URLs
EMEP	Norwegian Meteorological Institute	http://webdab.emep.int/
EDGAR	RIVM	http://arch.rivm.nl/env/int/coredata/edgar/index.html
Aerocom	LSCE(CNRS) / MPI-Met	http://nansen.ipsl.jussieu.fr/AEROCOM/
IIASA	International Institute for Applied Systems Analysis (IIASA)	http://www.iiasa.ac.at/rains/index.html

Current data portal; Please use each dataset reference when using

GEIA/ACCENT Emissions

A cooperative effort

Project description

Emission Data portal

Workshops & meetings

ACCENT web portal

GEIA project

Web links

Contacts

Home

Search for another database

POET inventory

This emission database was developed within the POET FP5 European project, by RIVM (The Netherlands), Service d'Aéronomie (France), and IASB (Belgium). The reference document is <u>' Olivier J., J. Peters, C. Granier, G. Petron, J.F. Müller, and S. Wallens: Present and future surface emissions of atmospheric compounds, POET report #2, EU project EVK2-1999-00011, 2003 "</u>

Documentation

Data : this database contains emission data for the following compounds. The gridded data are available in ASCII format, and will soon be available in NetCDF format.

- Remarks:
- CH3CHO is a lumped specie for all non-CH2O aldéhydes
- C2H5OH is a lumped specie for all non-CH3OH alcohols
- · Mek (Methyl-ethyl-ketone) is a lumped specie for all non-acetone ketones

Emission gridded data	Emission Totals (not available)
CO	<u>co</u>
NOx	NOx
<u>C2H4</u>	<u>C2H4</u>
C2H6	<u>C2H6</u>
<u>C3H6</u>	<u>C3H6</u>
<u>C3H8</u>	C3H8
Higher alkanes	Higher alkanes
Higher alkenes	Higher alkenes
CH2O	CH2O
CH3CHO	CH3CHO
CH3OH	CH3OH
C2H5OH	C2H5OH
Acetone	Acetone
Mek	Mek
Terpenes	Terpenes
Isoprene	Isoprene

	GEIA/ACCENT Emissions A cooperative effort			APNES
Project description	Search for another com	pound another database		
Emission Data portal	*			
Workshops & meetings	weather weather			
ACCENT web portal	CO from POET			
	CO (carbon monoxide)	is an ozone precursor.		
GEIA project	The main anthropogeni	c sources of CO are residential biofi	el use and road transport (both 25%), savannah	
Neb Enks	project EVK2-1999-000		e surface emissions of atmospheric compounds,	POET report#2, EU
Contacts				
Home	 Natural (biogenic + o 	ceana) emissions		
	These emissions are co	insidered to have no Interannual var	tability.	
	1	Biogenic	Oceans	
	1990-2020	Ascii NetCDF	Asci NetCDF	
	1990 - 2001		Bloom books	
	1000	Anthropogenic	Biomass burning	
	1990	Asci NetCDF	Ascii NetCDF	
	1991	Ascii NetCDE	Ascii NetCDE	
	1992	Ascil NetCDF Ascil NetCDF	Asci NetCDF Asci NetCDF	
	1993	Ascii NetCDF	Asci NetCDF	
	1995	Ascil NetCDE	Asci NetCDF	
	1996	Ascii NetCOF	Ascii NetCDE	
	1997	Asci NetCDF	Ascil NetCDE	
	1998	Asci NetCOF	Ascil NetCDF	
	- 2025	2 9 9 10 M 10 10 10 10 10 10 10 10 10 10 10 10 10	Ascii NetCDF	
	1999	Ascii NetCDF	Property of the part of the	
	2000	Ascil NetCOF Ascil NetCOF	Ascii. NetCDE	
	2000 2001	Ascii NetCDE	Ascil NetCDE Ascil NetCDE	
	2000 2001	Ascii NetCDE Ascii NetCDE	Ascil NetCDE Ascil NetCDE	
	2000 2001	Ascil NetCDE Ascil NetCDE 0, 2050, 2100 (will be soon availabl	Ascii NetCDE Ascii NetCDE	
	2000 2001 Scenarios : 2000 - 202	Ascii NetCDE Ascii NetCDE 0, 2050, 2100 (will be soon availabi Anthropogenic	Asdi NetCDE Asdi NetCDE e) Biomass burning	

What you can get for each species:

ASCII files: total anthropogenic = technol + biofuel + agric. waste biomass burning = forest + savanna fires NetCDF files: all individual files

Conclusions

Large uncertainties still remain in emissions quantification:

→ Reduce uncertainties; temporal and spatial resolution of inventories

- of anthropogenic emissions
- of biomass burning emissions
- → Intercomparisons, evaluations and consistency
 - Use of inverse modeling (for CO, NOx, other??)
 - work on consistency of gaseous/aerosols emissions
 - Define some ways of improving/evaluating emissions of NMVOCs

→ Couple emissions models/algorithms with CTMs

- natural emissions of both gas/aerosols
- use consistent datasets (database of driving variables might help) same vegetation map biomass burning/ biogenic NMVOCs