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Regions and network




Basic Inverse Principles

e Reverse direction of causality
e Fundamentally a statistical problem

e Bayesian methods combine prior information and data



Why use Bayesian methods

Risk biasing solution
Regularization.
Provide a meaningful norm

There is other real information



lllustration from Rodgers 2000
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P(z,y), joint PDF of x and y.
P(z) P(z,y) integrated over y.
P(aly), P(z) given y.

M mapping from x to y
(measurement).



Bayes Theorem

P(y|x)P(x
o P(xly) = (y1|3()y)( )

e use M to calculate P(y|x)



Linear Gaussian Example

s and d sources and data. Subscript O initial value and ¢ standard deviation.
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Parameters of PDF

Maximum of PDF most likely value. Minimize

Ms —d,, 2 S—S
e
Od Og

Y2 cost function
Means and variances calculated as moments of PDF

Assumes M perfect.

:



The Classical Solution

e Assume M linear and replace with matrix J

o Generalize uncertainties to covariances C and discretize s and d to S and D
- o - o N1 /5 -
S =S, +C(5p)I7T (JC(SO)JT + C(D)) (D _ JSO)

C(S)"'=C(Sy) ' +ITC(D)"1I



Calculating Jacobian

Forward Mode Adjoint mode
Divide earth into regions Create adjoint model
Run source for each region | Run tracer backwards for each observation.
Limits source resolution Freezes choice of observations
Enables network design Allows coupling



Matrix Free Methods

Only practical way forward

Variational method directly minimizes y?
Kalman Filter sequentially assimilates data
Avoid linearity assumption

Only low-order approximation of covariance
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concentrations for the
sum of the three
background fluxes
(‘“+'), the observational
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to them in the inversion
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inverting for regional
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means over 1992-1996.
for all models.
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Interannual Variability

—T -
a) Global

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

The flux interannual variability (PgC yr—1!) for the full globe, and for three broad
latitude bands and partitioned into land fluxes (solid lines) and ocean fluxes
(dashed lines).



RESULTS

CO, Flux Estimates

e Regionally integrated

e 11, 19, or 35 sampling locations
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[Rodenbeck et al.: Atmos. Chem. Phys. Discuss., 3, 2575-2659, 2003]




Current Problems

e Not enough data
e Not all sources at surface

e Transport models insufficient



Carbon Cycle Data Assimilation

Reduce number of unknowns
Replace flux map by model; unknowns are model parameters and state
Can learn about processes

Results biased by underlying model



Comparison of Direct and Model-based Inversion
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Comparison of our optimized terrestrial flux (solid green) with inversions using 16
stations (dotted black) and 19 stations (dashed red) of Rodenbeck et al. (2003).
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Summary

Atmospheric inversion is a statistical problem
Information is limited to large scales by lack of data
Techniques and models are evolving to cope with large data volumes

Combination with process models offers an alternative way forward.



