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In-situ Observations
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Synthesis inversion
• Red ‘x’ indicates mean flux 
across 15 models

• Blue circles indicate mean a 
posteriori uncertainty (‘within’
model error)

• Red error bars indicate model 
spread (‘between’ model error)

• ‘Within’ model uncertainty 
larger than ‘between’ model 
uncertainty for most regions

From Gurney et al. (2002)

• Current inversion 
system is data limited!
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Satellite Observations

AIRSAIRS

GOSATGOSAT OCOOCO

IASIIASI

SciamachySciamachy
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Data assimilation vs. stand-alone retrieval

Data Assimilation

Various sources of atmospheric 
observations are used to estimate 
atmospheric state in consistent 
way.

Spatial and temporal 
interpolation of information is 
done with atmospheric transport 
model.

Attribution of random and 
systematic errors is complicated.

Stand-alone Retrieval

Individual retrievals need to be 
gridded and averaged to produce 
3-dimensional fields.

Only observations from single 
satellite platform are used to 
estimate atmospheric state.

Attribution of random and 
systematic error less 
complicated.
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Retrieval example

The MOPITT stand-alone algorithm retrieves CO, Ts, and ε using proper 
first guess estimates and NCEP reanalysis profiles for T and q.
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Satellite data assimilated operationally at ECMWF

• 3xAMSU-A (NOAA-15/16 + AQUA) 
• 2xAMSU-B (NOAA-16/17)
• 3 SSMI  (F-13/14/15) in clear and rainy conditions
• 1xHIRS  (NOAA-17)
• AIRS (AQUA)
• Radiances from 5 GEOS (Met-5, Met-8, GOES-9/10/12)
• Winds from 4 GEOS (Met-5/8 GOES-10/12) and 

MODIS/TERRA+AQUA 
• Scat winds from QuikSCAT and ERS-2 (Atlantic)
• Wave height from ENVISAT RA2 + ERS-2 SAR
• Ozone from SBUV (NOAA 16) and SCIAMACHY (ENVISAT) 

27 different satellite sources!
Coming soon: NOAA-18, SSMIS,
radio occultation (GPS),…
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4D-Var Data Assimilation
4-dimensional variational data assimilation is in principle a least-
squares fit in 4 dimensions between the predicted state of the 
atmosphere and the observations. 

The adjustment to the predicted state is made at time To, which 
ensures that the analysis state (4-dimensional) is a model trajectory.
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4D-Var Data Assimilation

Minimize the incremental 4-dimensional cost function:
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4D-Var Analysis

(T, u, v, q, O3, CO2, CH4, …)

Background 
Constraint 

(Jb)
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Observations



ECMWF Seminar                              6 September 2005

CO2 Observations

Near infrared; large footprint with much cloud contamination

Satellite observations:

AIRS

IASI

Sciamachy

OCO

GOSAT

In-situ observations:
airborne flasks

surface flasks

Infrared; Lots of data, but low signal-to-noise ratio and 
sensitive to middle- and upper troposphere only

Near infrared; only over sun glint and land, but sensitive 
to lower troposphere

Very accurate, but limited in number and not near-
real time

}

}

}
Focus is currently on satellite observations because of their quick 
and global availability. They are also already mostly part of the 
operational NWP system. In-situ data are crucial for validation.

Satellite sensitivity to CO2

IR

NIR

Christi and Stephens, 2004
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Observations - Infrared

Radiance = F ( T, CO2, H2O, O3, CO, CH4, N2O )Radiance = F ( T, CO2, H2O, O3, CO, CH4, N2O )
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Observations – Near Infrared
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Data limitations
• Emission based instruments (AIRS, IASI) have low 
sensitivity to the lower troposphere. They also can 
only observe the atmosphere above clouds.

• Reflection based instruments (Scia, OCO, GOSAT) 
are sensitive to the whole column, but suffer from 
aerosol scattering and cloud scattering and 
absorption. 

• First dedicated CO2 satellite instruments, making 
use of near-infrared technique, will not be launched 
before end of 2007 with an expected lifetime of 2 
years.

• Validation data for satellite estimates is very limited. 
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Bias correction

4D-Var data assimilation is based on the general assumption that 
errors are random. Therefore, any significant systematic errors in 
the observations and/or the radiative transfer model need to be 
corrected before proper assimilation can be done.

Model bias should be corrected as well, but is difficult to estimate. 
There is currently no model bias correction at ECMWF, but research 
is being done on this issue.

Model bias might end up in the observation bias correction, because 
there is no straightforward method to distinguish between model bias 
and observation bias.

Therefore, any bias correction method is in theory capable of 
removing some of the CO2 (CO, CH4, N2O) signal!! Slow variations in 
time or global means could be incorrectly seen as model bias!!! 
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Monitoring

Observed radiances are being monitored against clear 
model radiances. Biases can be detected and corrected.

14 µm
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Systematic errors in observations are usually identified by monitoring 
against the forecasted background in the vicinity of constraining 
radiosonde data.  

HIRS channel 5 (peaking 
around 600hPa on 
NOAA-14 satellite has 
+2.0K radiance bias 
against model

HIRS channel 5 (peaking 
around 600hPa on 
NOAA-16 satellite has 
no radiance bias against 
model.

Example of bias correction
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Biases in Upper Stratospheric Channels

Dec 2004 date June 2004

Seasonal dependence of bias (K)

Systematic errors 
in the model upper 
stratospheric 
temperatures give
apparent air-mass 
dependent biases

AIRS channel 75
(stratopause/mesosphere)
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Bias correction methods
Flat bias

One single global mean bias correction value.

Air-mass dependent bias

Regression against model thicknesses (1000 – 300 hPa and 
200 – 50 hPa), column water vapour, and surface skin 
temperature to account for air-mass dependency of biases.

Gamma-correction

Combination of flat bias and gamma correction of radiative 
transfer. It tries to correct for errors in the RT by 
multiplying the optical depth with a correction factor.

Internal bias variable

Any of the above bias correction methods can be built into 
the assimilation system as a slow-moving state variable.



ECMWF Seminar                              6 September 2005

Greenhouse gas signals are much 
smaller than temperature signals. 
An apparently constant bias in a 1 
month time series is in reality part 
of a seasonal cycle.

Potential problems with slow-moving signals
After a month of 
monitoring a relatively 
constant bias is 
observed and then 
corrected.
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Potential problems with slow-moving signals

With an adaptive bias correction (e.g., a new flat bias each 
month) the small signal is removed from the observations.
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Forecast Model
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Forecast model
• The forecast model is used to predict the 

atmospheric state at the observation locations and 
times starting from the initial state.

• It therefore needs to include the proper dynamics 
and physics to be able to fit the observations within 
the specified error margins.

• For greenhouse gases this means that advection, 
vertical diffusion, convection, and surface fluxes 
are needed with sufficient accuracy for a 12 hour 
forecast.
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Forecast model

• Semi-Lagrangian advection (not fully mass 
conservative)

• Implicit K-diffusion formulation for the vertical 
diffusion

• Fully-implicit 1st order conservative mass flux 
advection for the convection

• Radiation: 6 band SW scheme and the AER LW 
code

The forecast model for the greenhouse gas 
assimilation will most likely be run at resolution T159 
(1.125˚ by 1.125˚) with 60 levels. The transport is 
based on the following:
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Land and ocean biosphere from space

Seawiffs observations provide a nice view of the temporal and spatial 
variability of the biosphere. This has then to be captured in climatological
surface fluxes.
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Ocean

CO2 surface fluxes - climatology
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Natural Biosphere

CO2 surface fluxes - climatology
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Anthropogenic

CO2 surface fluxes - climatology
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Tracer Transport
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Tracer transport
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Background 
constraint
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Background constraint
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Background constraint
The role of the background error covariance matrix B is to:

provide statistically consistent increments at the 
neighbouring gridpoints and levels of the model

Two problems:

We want to describe the statistics of the errors in the 
background, but we don’t know what the true state is

The B matrix is enormous (~107 x 107), so we are forced to 
simplify it.

Differences between 48 and 24 forecast (NMC method, Parrish 
and Derber, 1992) or an analysis-ensemble method (Fisher, 2004) 
are usually used to estimate the background error covariance 
matrix.
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Example of background constraint

Background 
correlation for 1 
specific level.

Background 
correlation for 1 
specific level.

Background departures

Increments

Analysis departures
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Background constraint

An observation departure is spread out both in 
the horizontal and the vertical by means of the 
background covariance structures.
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Operational Estimation of Background Error Statistics 

• Perturb all the inputs to the analysis/forecast system with random perturbations, 
drawn from the relevant distributions:

• The result will be a perturbed analysis and forecast, with perturbations 
characteristic of analysis and forecast error.

• The perturbed forecast may be used as the background for the next (perturbed) 
cycle.

• After a few cycles, the system will have forgotten the original initial background 
perturbations.

• This ultimately provides statistics representing the background error.

Analysis
xb+εb

y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf
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Problems with greenhouse gas variables
• We don’t have a proper analysis to start from.

• Current satellite observations constrain globally a limited 
vertical part of the atmosphere.

• Current surface and flight profiling observations are only 
available at a small number of locations.

• This means that we obtain a reasonable estimate of the 
forecast error, but a very limited estimate of the analysis 
error. Both are important for the background error.
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Possible Solution?
2
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Specify a background 
covariance model with a 
few unknown parameters.

Minimize the following cost function with respect to the 
unknown covariance model parameters using a 
representative set of observations:

This can be done either formally or by using a Monte Carlo 
set-up.
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Example
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Examples
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Example 1: CO2 column estimates

• CO2 has already been implemented as a so-called ‘column’
variable within the 4D-Var data assimilation system. 

• This means that CO2 is not a model variable and is therefore not 
moved around by the model transport.

• For each AIRS observation location a CO2 variable is added to 
the control (minimisation) vector. The CO2 estimates therefore 
make full use of the 4D-Var fields of temperature, specific humidity 
and ozone.

• The CO2 variable itself is limited to a column-averaged 
tropospheric mixing ratio with fixed profile shape, but a variable 
tropopause.

• A  background of 376 ppmv is used with a background error of 
30 ppmv.

• 18 channels in the long-wave CO2 band are used
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Example 1: CO2 column estimates
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Example 1: CO2 column estimates

ECMWF estimates LSCE CO2 simulation
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Example 1: CO2 column estimates

JAN

DEC

30 S 30 N

Model 1 Model 2

AIRS

Satellite CO2 estimates can already be used to learn 
more about differences between transport models!
Satellite CO2 estimates can already be used to learn 
more about differences between transport models!
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Example 2: Validation

Flight data kindly provided by H. Matsueda, MRI/JMA
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Example 3: CO2 tracer transport

1 April – 30 August simulation for 500 hPa
from ECMWF CO2 forecast model.
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Example 4: Tracer constraint on winds

3D Var • 1 obs 4D Var • 1 obs @ t0

4D Var • 1 obs @ t0+3 4D Var • 1 obs @ t0+6
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Including CO2 in the analysis results in an improved fit 
to the radiosonde temperature profiles in the vertical 
range where AIRS is sensitive to CO2.

used T
TEMP-T  Tropics
exp:emqb emqa 2005030100-2005030912(6)

nobsexp
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     5349
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Example 5: Impact of CO2 on Temperature Analysis
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Conclusions

• Challenging and exciting advance in data 
assimilation

• Possible because of intensive collaboration 
between ECMWF and various research institutes

• Aim is to build an operational system by 2009 to 
monitor the atmospheric greenhouse gases

• The 4D atmospheric fields will then hopefully 
contribute to a better quantification and 
understanding of the carbon surface fluxes.


