MODELLING OF THE CARBON CYCLE IN THE GEOLAND PROJECT
Modelling of the carbon cycle in the geoland project

Contents

• Overview of geoland/ONC

• Models used in geoland/ONC
 ➢ ISBA-A-gs / C-TESSEL (Météo-France / ECMWF)
 ➢ ORCHIDEE (LSCE)

• Representation of land surface patchiness

• VALIDATION:
 ➢ LAI
 ➢ FaPAR
 ➢ water flux comparison with operational models
 ➢ ground based flux measurements
 ➢ crop production

• Data Assimilation
Modelling of the carbon cycle in the geoland project

Overview

The geoland project

Operational Scenario

Regional Monitoring

Global Monitoring

Core Services

Generic Land Cover

Bio-physical Parameters

Observatories

Natural Carbon Fluxes

Natural Carbon Fluxes

- Habitat Directive
- Wetlands
- ESPON
- Water Framework Directive
- Soil Protection Initiative
- Sustainable Development
- Fight against Poverty
- Global Change (Kyoto)
- Global Environment Protection

Directives Implementation

Policy Support

06.09.2005

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France
Overview

The Observatory of Natural Carbon Fluxes of geoland

Partners

• Research partners: KNMI, LSCE, ALterra
• Service providers: ECMWF, Météo-France
• Associated user: LSCE

Objectives

• Kyoto protocol
• Transpose the tools used for weather forecast to the monitoring of vegetation and of natural carbon fluxes:

 Near real-time monitoring at the global scale (ECMWF) based on
 ➢ modelling,
 ➢ in situ data,
 ➢ assimilation of satellite data.
• Scientific validation of the system
Modelling of the carbon cycle in the geoland project

Overview

The products

• The terrestrial biospheric CO₂ flux at the soil-vegetation-atmosphere interface
• The water flux at the soil-vegetation-atmosphere interface
• The vegetation biomass
• The leaf area index
• The root-zone soil moisture
• The carbon storage.

SPATIAL RESOLUTION: ½ degree

The anthropogenic fluxes are not accounted for here: to be treated in atmospheric analysis projects (e.g. GEMS).

The fluxes produced by geoland will be used by GEMS.
STRONG PHYSICAL LINKS BETWEEN THE PRODUCTS:
All these quantities interact and need to be fully consistent, i.e. produced at the same time by a physically-based model.
Overview

Usefulness of remote sensing data

- Land use maps (e.g. ECOCLIMAP)
- Analysis of the above-ground biomass by assimilation
- Model error ➔ Bias reduction
- Atmospheric forcing ➔ Precipitation + Radiation
- Model parameters ➔ Assimilation
- Scaling issues ➔ Tiling
Modelling of the carbon cycle in the geoland project

Overview

Maturity

- Assimilation of Ta & qa to analyse soil moisture already operational at ECMWF and Météo-France

- Assimilation of NDVI to analyse vegetation biomass is well advanced at LSCE

- ELDAS FP5 project

- New versions of operational land surface models are able to simulate the CO₂ fluxes

- Modelling: ISBA-A-gs at Météo-France, ORCHIDEE at LSCE, both involved in the PILPS-Carbon international intercomparison exercise
Modelling of the carbon cycle in the geoland project

Models

Land-surface modelling: the energy budget
Modelling of the carbon cycle in the geoland project

Land-surface modelling: the water budget

\[\Delta W = P - R - D_r - E \]

- Precipitation
- Runoff
- Transpiration
- Interception
- Drainage
- Soil moisture (W)
The stomatal aperture controls the ratio:

Photosynthesis/Transpiration

according to the environment conditions:

- Light, temperature, air humidity, soil moisture, atmospheric [CO₂]
- \(qa \), \(Ta \), \(qsat \), \(Ci \), \(Cs \), \(H₂O \), \(PAR \), \(q_s \), \(T_s \)

Land-surface modelling: the role of stomatal control
Modelling of the carbon cycle in the geoland project

Models

A new version of the operational SVAT of Météo-France

C-TESSEL (Voogt et al. 2005)
A new version of the operational SVAT of ECMWF, based on ISBA-A-gs

ORCHIDEE (Krinner et al. 2005)
A research dynamic vegetation model with a high level of complexity
Modelling of the carbon cycle in the geoland project

Models

Met. forcing LAI

ISBA / TESSEL LE, H, Rn, W, Ts...

Met. forcing LAI

ISBA-A-g_s / C-TESSEL Active Biomass LE, H, Rn, W, Ts...

[CO_2]_{atm} CO_2 Flux

ISBA-A-g_s / C-TESSEL are CO_2-responsive land surface models, new versions of operational schemes used in atmospheric models.

Jean-Christophe Calvet
Météo-France

Observatory Natural Carbon Fluxes
Modelling of the carbon cycle in the geoland project

Models

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France

06.09.2005

ORCHIDEE is a research dynamic global vegetation model

- **Atmosphere**
 - Prescribed or calculated by LMDZ General Circulation Model
 - Meteorological variables
 - rainfall, temperature, solar radiation, CO2 concentration...
 - Sensible and latent heat fluxes, albedo, roughness, surface temperature, CO2 flux...

- **Biosphere**
 - ORCHIDEE
 - STOMATE
 - Vegetation and soil Carbon cycle
 - Prognostic phenology and allocation
 - NPP, biomass, litterfall...
 - LAI, roughness, albedo
 - Δt = 1 day
 - SECHIBA
 - Energy budget, Hydrology + Photosynthesis
 - Soil profiles of water and temperature, GPP
 - Δt = 1 hour
 - LPJ
 - Dynamic Vegetation Model
 - Vegetation types, biomasses
 - Vegetation distribution
 - Prescribed or calculated by
 - Δt = 1 year

- **Models**
 - LMDZ
 - General Circulation Model
 - LAI, roughness, albedo
 - Soil profiles of water and temperature, GPP
 - Sensible and latent heat fluxes, albedo, roughness, surface temperature, CO2 flux...
 - Prescribed or calculated by
 - Meteorological variables
 - Vegetation distribution
 - Prognostic phenology and allocation
 - Δt = 1 hour, Δt = 1 day, Δt = 1 year

- **Prescribed or calculated by**
 - Meteorological variables
 - Vegetation distribution
 - Prognostic phenology and allocation
 - Δt = 1 hour, Δt = 1 day, Δt = 1 year
Modelling of the carbon cycle in the geoland project

ISBA-A-gs / C-TESSEL

Photosynthesis

- SVAT approach (time step = minutes)

- Biochemical approach (explicit simulation of photosynthesis): *Jacobs et al. 1996*

- Big-leaf but radiative transfer within the canopy for photosynthesis and stomatal conductance
Modelling of the carbon cycle in the geoland project

Photosynthesis

Other global models using a biochemical approach:

SiB2 (Sellers et al. 1996)
IBIS (Foley et al. 1996)
BATS (Dickinson et al. 1998)
MOSES (Cox et al. 1998-2001)
BETHY (Knorr 2000)
ORCHIDEE (Krinner et al. 2005)
Soil water stress

- Key parameters of the photosynthesis model are affected by drought: the well-watered value are adjusted by using the Soil Wetness Index (SWI)
- 2 possible strategies: drought-avoiding / drought-tolerant:

DROUGHT-TOLERANT

DROUGHT-AVOIDING

Crops, Grasslands

- Mesophyll conductance g_m
- Max leaf-to-air saturation deficit D_{max}

Trees, Shrubs

- Mesophyll conductance g_m
- Max C_i coupling factor f_0

Calvet 2000, Calvet et al. 2004
Modelling of the carbon cycle in the geoland project

Respiration

- Ecosystem respiration is calculated by using a simple Q_{10} function depending on soil temperature.

 this is enough to calculate a net CO$_2$ flux but NPP cannot be simulated

- Autotrophic respiration is calculated for the above-ground biomass only.
- Heterotrophic respiration is not explicitly calculated in the present version.
Modelling of the carbon cycle in the geoland project

ISBA-A-gs / C-TESSEL

Allocation

- The **active biomass** (= leaves) is a reservoir fed by the net CO₂ uptake by leaves (i.e. An = Photosynthesis – Leaf respiration). It looses carbon following an exponential law whose e-folding time depends on the daily maximum An (parameter = max leaf span time).

- The **above-ground biomass** (non-woody) is derived from the active biomass:
 - Growing period: a logarithmic nitrogen dilution equation is used
 - Senescence: respiration losses and exponential decline
Phenology

- LAI is linearly related to the active biomass (parameters = leaf nitrogen concentration and 2 plasticity parameters)
- A minimum value of LAI is prescribed (e.g. 0.3 for annual vegetation), permitting a self restart of the vegetation when photosynthesis becomes active
- Possibility to cut the vegetation or to maintain LAI at its minimum value, for agricultural applications
Modelling of the carbon cycle in the geoland project

ISBA-A-gs / C-TESSEL

Phenology

Merits of this methodology

- Simple
- Leaf onset and offset dates don’t have to be prescribed (permitting to simulate the interannual variability and climate change effects)
- No use of empirical degree-day sums (all the factors are accounted for, not only temperature)

Other models using this approach

AVIM (Ji 1995, Dan et al. 2005)
STEP (Mougin et al. 1995)
Modelling of the carbon cycle in the geoland project

ISBA-A-gs / C-TESSEL

Parameters at a global scale for the ECOCLIMAP vegetation types

<table>
<thead>
<tr>
<th>Vegetation type</th>
<th>Photosynthesis</th>
<th>Allocation/Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g_m) (mm s(^{-1}))</td>
<td>(g_c) (mm s(^{-1}))</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>C3 Crops</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>C4 crops</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>C3 grasslands</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>C4 grasslands</td>
<td>6</td>
<td>0.15</td>
</tr>
<tr>
<td>Coniferous forests</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Evergreen forests</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>Deciduous forests</td>
<td>3</td>
<td>0.15</td>
</tr>
</tbody>
</table>

- **Mesophyll conductance**
- **Cuticular conductance**
- **Max leaf span time**
- **Critical SWI**
- **N Plasticity parameters**
- **Leaf N**

Gibelin et al. 2005
Modelling of the carbon cycle in the geoland project

ISBA-A-gs / C-TESSEL

Example of Carbon flux simulations by ISBA-A-gs for Southwestern France (Toulouse)

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

<table>
<thead>
<tr>
<th>ORCHIDEE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis</td>
<td>• Biochemical approach (Farquhar, Ball & Berry)</td>
</tr>
</tbody>
</table>
| **Autotrophic respiration** | • Maintenance respiration: linear response to temperature (Ruimy et al.), and possible adaptation to climate change
| | • Growth respiration: a fixed part of net assimilation |
| **Heterotrophic respiration** | • CENTURY-like model |
| **Allocation** | • Allocation to leaves/stems/roots function of resources: water, light, nutrients (Tilman 1998)
| | • 8 pools of living biomass |
| **Phenology** | • Degree-day model for leaf onset, accounting for soil moisture, tuned at a global scale by using satellite data
| | • Senescence: soil moisture and temperature are accounted for |
| **Competition** | • Grass/tree competition and competition between tree species described in LPJ |
| **Fires** | • Fire occurrence described in LPJ |
| **Carbon storage** | • Litter (above/below ground, structural/metabolic, natural/agricultural)
| | • 3 soil organic matter pools (active, slow, passive) |
Modelling of the carbon cycle in the geoland project

Representation of land surface patchiness

- Usefulness of tiling

Herbaceous classes of ECOCLIMAP: Mainly 4 ‘metaclasses’

- Type 1
- Type 2

Image showing maps of herbaceous classes with color-coded areas indicating different types of vegetation. The maps are labeled with coordinates and a legend indicating various types of vegetation.
Usefulness of tiling

Herbaceous classes of ECOCLIMAP:
Fraction of type 2 can be high

8 tiles:
- bare soil (and rock/snow)
- Deciduous forests
- Coniferous forests
- Evergreen forests
- grass C3
- grass C4
- crops C3
- crops C4
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Yearly maximum of LAI

Gibelin et al. 2005

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Zonal mean of the maximum of LAI

Gibelin et al. 2005
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Correlation of the monthly LAI anomaly (difference between monthly LAI and the mean annual cycle) between ISBA-A-gs and the ISLSCP-II data (1986-1995).

Gibelin et al. 2005

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Monthly time series of LAI from ISBA-A-gs and ISLSCP-II over Southern Africa [-35°N:-15°N, 10°E:40°E]

Gibelin et al. 2005

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Sahel

Relative anomaly of LAI (%) versus precipitation anomaly (mm d⁻¹)
(blue boxes: ISLSCP2 ; red dots: ISBA-A-gs ; green bars: precipitation)

Southern Africa

Gibelin et al. 2005

06.09.2005

Observatory Natural Carbon Fluxes
Modelling of the carbon cycle in the geoland project

VALIDATION: LAI

Start of the growing season (mean 1986-1995) simulated by ISBA-A-gs and observed in ISLSCP-II

Gibelin et al. 2005

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

VALIDATION: FaPAR

2003 FaPAR anomaly:

Observatory Natural Carbon Fluxes
Modelling of the carbon cycle in the geoland project

VALIDATION: water flux comparison with operational models

ISBA standard

ISBA standard – ISBA-A-gs

Comparison of the evapo-transpiration flux (JJA) of ISBA and ISBA-A-gs

A.-L. Gibelin

Jean-Christophe Calvet

Météo-France
Modelling of the carbon cycle in the geoland project

VALIDATION: ground-based flux measurements

Validation of the ORCHIDEE fluxes by using more than 30 FLUXNET sites: Average diurnal cycle
Validation of the ORCHIDEE fluxes by using more than 30 FLUXNET sites: Average seasonal cycle
Modelling of the carbon cycle in the geoland project

VALIDATION: crop production

1900-2000 crop production simulated by the STICS module of ORCHIDEE over Europe: the management effect

N. Viovy
06.09.2005
Modelling of the carbon cycle in the geoland project

VALIDATION: crop production

Wheat yield (t ha\(^{-1}\)) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5

<table>
<thead>
<tr>
<th>Year</th>
<th>Spring Wheat</th>
<th>Winter Wheat</th>
<th>Observation for Midi-Pyrénées</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>5.3</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>6.2</td>
<td>6.2</td>
<td>5.9</td>
</tr>
<tr>
<td>2003</td>
<td>4.2</td>
<td>4.8</td>
<td>4.6</td>
</tr>
<tr>
<td>2004+</td>
<td>4.6</td>
<td>5.8</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Modelling of the carbon cycle in the
geoland project

VALIDATION: crop production

Maize yield (t ha\(^{-1}\)) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5
Modelling of the carbon cycle in the geoland project

Data Assimilation

The variational approach

Formalism: Minimization of a cost function

\[J(x) = J^b(x) + J^o(x) \]

\[= \frac{1}{2} (x - x^b) \mathbf{B}^{-1} (x - x^b) + \frac{1}{2} (y - H(x))^T \mathbf{R}^{-1} (y - H(x)) \]

- \(x \) is the control variables vector
- \(y \) is the observation vector
- \(H \) is the observation operator

The analysis is obtained by the minimization of the cost function \(J(x) \)

- \(\mathbf{B} \) is the background error covariance matrix
- \(\mathbf{R} \) is the observation error covariance matrix

⇒ Literal solution for linear model:

\[x^a = x^b + K(y-Hx^b) \]

with \(K = BHT(HBH^T+R)^{-1} \)
Modelling of the carbon cycle in the geoland project

Data Assimilation

A simplified algorithm (adapted from Balsamo and Bouyssel)

From a perturbation of the initial total biomass δB_{init} applied on each model land grid-point.

Guess G

Guess G'

δB_{init}

$B_{\text{init}} = B_{\text{init}} + \delta B_{\text{init}}$

$\delta \text{LAI (i)} = \text{LAI}_G(i) - \text{LAI}_G'(i)$

Numerical linearization of the observation operator H
Two main hypotheses have to be validated

- **TL** (linearity)
 - Minimization of the cost function with a look up table ...
 - ... + comparison to a sequential stochastic approach
 (Ensemble Kalman Filter, not shown)

- **2D** (horizontal decoupling)
 - Verified at our spatial scale?
Modelling of the carbon cycle in the geoland project

Data Assimilation

Application to the SMOSREX fallow

- Analysis of Biomass thanks to in situ LAI observations (10 days analysis period)
 - Perfect LAI correction
 - Overall good Biomass analysis (particularly in 2002)
 - Low impact on w2 (different LAI → different root water extraction and transpiration rates)

L. Jarlan

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet
Météo-France
Modelling of the carbon cycle in the geoland project

Data Assimilation

Application to the SMOSREX fallow

- Analysis of Biomass and \(\text{w2} \) thanks to in situ LAI observations (10 days analysis period)

- Perfect LAI correction
- Overall good Biomass analysis
- High scattering of analysed \(\text{w2} \) ...
- ... but \(\text{w2} \) better in agreement with observations during high water stress period
Prospects

• ISBA-A-gs / C-TESSEL (Météo-France / ECMWF)
 ➢ Roots
 ➢ Wood
 ➢ Soil carbon
 ➢ NPP

• Representation of land surface patchiness
 ➢ Regional applications (5-10 km) at Météo-France and LSCE

• VALIDATION:
 ➢ Test of C-TESSEL global simulations of LAI
 ➢ Test of ISBA-A-gs and C-TESSEL using the FLUXNET data

• Data Assimilation
 ➢ Global assimilation of LAI products in ORCHIDEE and C-TESSEL
Thank you for your attention!

Contact: Medias-France
Infoterra GmbH
Jean-Christophe Calvet
+33 561079341
calvet@meteo.fr

www.gmes-geoland.info
geoland coordinators:
Infoterra GmbH
Medias-France

Co-funded by the European Commission within the GMES initiative in FP-6