**Integrated GMES Project on Landcover and Vegetation** 

### MODELLING OF THE CARBON CYCLE IN THE GEOLAND PROJECT





Co-funded by the European Commission within the GMES initiative in FP-6

Jean-Christophe Calvet – Météo-France – ECMWF Seminar – 06.09.2005





#### Contents

- Overview of geoland/ONC
- Models used in geoland/ONC
  - ISBA-A-gs / C-TESSEL (Météo-France / ECMWF)
  - ➢ ORCHIDEE (LSCE)
- Representation of land surface patchiness

#### • VALIDATION:

- ≻ LAI
- ➤ FaPAR
- > water flux comparison with operational models
- ground based flux measurements
- ➤ crop production
- Data Assimilation

06.09.2005

KNMI

**Observatory Natural Carbon Fluxes** 



**Observatory Natural Carbon Fluxes** 

Météo-France





#### Overview

### The Observatory of Natural Carbon Fluxes of geoland

#### **Partners**

- Research partners: KNMI, LSCE, ALTERRA
- Service providers: ECMWF, Météo-France
- Associated user: LSCE

#### **Objectives**

- Kyoto protocol
- Transpose the tools used for weather forecast to the monitoring of vegetation and of natural carbon fluxes:

Near real-time monitoring at the global scale (ECMWF) based on

- ≻modelling,
- ≻in situ data,
- >assimilation of satellite data.
- Scientific validation of the system

06.09.2005

**Observatory Natural Carbon Fluxes** 







Overview

### The products

- The terrestrial biospheric CO<sub>2</sub> flux at the soil-vegetation-atmosphere interface
- The water flux at the soil-vegetation-atmosphere interface
- The vegetation biomass
- The leaf area index
- The root-zone soil moisture
- The carbon storage.

#### SPATIAL RESOLUTION: 1/2 degree



The anthropogenic fluxes are not accounted for here: to be treated in atmospheric analysis projects (e.g. GEMS). The fluxes produced by geoland will be used by GEMS.

**Observatory Natural Carbon Fluxes** 



06.09.2005

ALTERRA

KNMI

# Modelling of the carbon cycle in the geoland project



Overview



All these quantities interact and need to be fully consistent, i.e. produced at the same time by a physically-based model



Overview

### Usefulness of remote sensing data

- Land use maps (e.g. ECOCLIMAP)
- Analysis of the above-ground biomass by assimilation
- Model error
- Atmospheric forcing
- Model parameters
- Scalingissues

- ➔ Bias reduction
- ➔ Precipitation + Radiation
- ➔ Assimilation
- → Tiling



ALTERRA

KNMI

**Observatory Natural Carbon Fluxes** 







**Overview** 

### Maturity

- Assimilation of Ta & qa to analyse soil moisture already operational at ECMWF and Météo-France
- Assimilation of NDVI to analyse vegetation biomass is well advanced at LSCE
- ELDAS FP5 project
- $\bullet$  New versions of operational land surface models are able to simulate the  $\mathrm{CO}_2$  fluxes

•Modelling: ISBA-A-gs at Météo-France, ORCHIDEE at LSCE, both involved in the PILPS-Carbon international intercomparison exercise

06.09.2005

ALTERRA

KNMI

**Observatory Natural Carbon Fluxes** 





Models



Land-surface modelling: the energy budget



**Observatory Natural Carbon Fluxes** 





Models



Land-surface modelling: the water budget

KNMI

**Observatory Natural Carbon Fluxes** 





Models



CONVERSION CONVERSION

Land-surface modelling: the role of stomatal control



Models

### ISBA-A-gs (Calvet et al. 1998-2004, Gibelin et al. 2005)

A new version of the operational SVAT of Météo-France

### C-TESSEL (Voogt et al. 2005)

A new version of the operational SVAT of ECMWF, based on ISBA-A-gs

#### **ORCHIDEE (Krinner et al. 2005)**

A research dynamic vegetation model with a high level of complexity









Models

#### Atmosphere



**ORCHIDEE** is a research dynamic global vegetation model

06.09.2005

KNMI

FCMWF

ALTERRA



**ISBA-A-gs / C-TESSEL** 

### **Photosynthesis**

- SVAT approach (time step = minutes)
- Biochemical approach (explicit simulation of photosynthesis): *Jacobs et al. 1996*
- Big-leaf but radiative transfer within the canopy for photosynthesis and stomatal conductance







06.09.2005

**Observatory Natural Carbon Fluxes** 





ISBA-A-gs / C-TESSEL

### **Photosynthesis**

Other global models using a biochemical approach:

SiB2 (Sellers et al. 1996) IBIS (Foley et al. 1996) BATS (Dickinson et al. 1998) MOSES (Cox et al. 1998-2001) BETHY (Knorr 2000) ORCHIDEE (Krinner et al. 2005)





06.09.2005

ALTERRA

KNMI

**Observatory Natural Carbon Fluxes** 





KNMI

### Modelling of the carbon cycle in the geoland project



**ISBA-A-gs / C-TESSEL** 

### Soil water stress

• Key parameters of the photosynthesis model are affected by drought: the well-watered value are adjusted by using the Soil Wetness Index (SWI)

• 2 possible strategies: drought-avoiding / drought-tolerant:



**DROUGHT-AVOIDING** 







#### Respiration

- Ecosystem respiration is calculated by using a simple Q<sub>10</sub> function depending on soil temperature *this is enough to calculate a net CO*<sub>2</sub>
- . .. . . . . .

flux but NPP cannot be simulated

- Autotrophic respiration is calculated for the above-ground biomass only
- Heterotrophic respiration is not explicitly calculated in the present version





Gifford 2003





#### Allocation

- The active biomass (= leaves) is a reservoir fed by the net CO<sub>2</sub> uptake by leaves
  (i.e. An = Photosynthesis Leaf respiration).
  It looses carbon following an exponential law whose e-folding time depends on the daily maximum An (*parameter* = max leaf span time).
- The above-ground biomass (non-woody) is derived from the active biomass:
  - Growing period: a logarithmic nitrogen dilution equation is used
  - Senescence: respiration losses and exponential decline



Net assimilation of C ACTIVE BIOMASS **ABOVE-GROUND BIOMASS** 



06.09.2005





**ISBA-A-gs / C-TESSEL** 

### Phenology

- LAI is linearly related to the active biomass (parameters = leaf nitrogen concentration and 2 plasticity parameters)
- A minimum value of LAI is prescribed

(e.g. 0.3 for annual vegetation), permitting a self restart of the vegetation when photosynthesis becomes active

• Possibility to cut the vegetation or to maintain LAI at its minimum value, for agricultural applications







06.09.2005

**Observatory Natural Carbon Fluxes** 





**ISBA-A-gs / C-TESSEL** 

#### Phenology

#### Merits of this methodology

- Simple
- Leaf onset and offset dates don't have to be prescribed (permitting to simulate the interannual variability and climate change effects)
- No use of empirical degree-day sums
- (all the factors are accounted for, not only temperature)



#### Other models using this approach

AVIM (Ji 1995, Dan et al. 2005) STEP (Mougin et al. 1995)

Observatory Natural Carbon Fluxes



06.09.2005

ALTERRA

KNMI

## Modelling of the carbon cycle in the geoland project



**ISBA-A-gs / C-TESSEL** 

### Parameters at a global scale for the ECOCLIMAP vegetation types

|                                   | PI                                      | Photosynthesis                          |           |                       | Allocation/Phenology          |                                              |               |                       |  |
|-----------------------------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------|-------------------------------|----------------------------------------------|---------------|-----------------------|--|
| Vegetation type                   | g <sub>m</sub><br>(mm s <sup>-1</sup> ) | g <sub>c</sub><br>(mm s <sup>-1</sup> ) | $	heta_c$ | τ <sub>m</sub><br>(d) | LAI <sub>min</sub><br>(m²m²²) | e<br>(m²kg⁻¹<br>%⁻¹)                         | f<br>(m²kg⁻¹) | N <sub>L</sub><br>(%) |  |
| C3 Crops                          | 1                                       | 0.25                                    | 0.3       | 150                   | 0.3                           | 3.79                                         | 9.84          | 1.3                   |  |
| C4 crops                          | 9                                       | 0.15                                    | 0.3       | 150                   | 0.3                           | 7.68                                         | -4.33         | 1.9                   |  |
| C3 grasslands                     | 1                                       | 0.25                                    | 0.3       | 150                   | 0.3                           | 5.56                                         | 6.73          | 1.3                   |  |
| C4 grasslands                     | 6                                       | 0.15                                    | 0.3       | 150                   | 0.3                           | 7.68                                         | -4.33         | 1.3                   |  |
| Coniferous forests                | 2                                       | 0                                       | 0.3       | 365                   | 1                             | 4.85                                         | -0.24         | 2.8                   |  |
| Evergreen forests                 | 2                                       | 0.15                                    | 0.3       | 365                   | 1                             | 4.83                                         | 2.53          | 2.5                   |  |
| Deciduous forests                 | 3                                       | 0.15                                    | 0.3       | 230                   | 0.3                           | 4.83                                         | 2.53          | 2                     |  |
|                                   | Mesophyll<br>conductance                | Cuticular<br>conducta                   | nce       | Max leat<br>span tim  | e                             |                                              |               | Leaf N                |  |
| Critical SWI                      |                                         |                                         |           |                       | N                             | N Plasticity parameters<br>Gibelin et al. 20 |               |                       |  |
| Observatory                       | Natural Ca                              | bon Elu                                 |           |                       |                               |                                              | Jean-Ch       | ristophe Calv         |  |
| Observatory Natural Carbon Fluxes |                                         |                                         |           |                       |                               |                                              |               | Météo-Franc           |  |





**ISBA-A-gs / C-TESSEL** 



**Example of Carbon flux simulations by ISBA-A-gs for Southwestern France (Toulouse)** 

06.09.2005

KNMI

FCMWF

ALTERRA

**Observatory Natural Carbon Fluxes** 





ORCHIDEE

| Photosynthesis            | Biochemical approach (Farquhar, Ball & Berry)                                                                                                                                                               |  |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Autotrophic respiration   | <ul> <li>Maintenance respiration: linear response to temperature (Ruimy et al.), and possible adaptation to climate change</li> <li>Growth respiration: a fixed part of net assimilation</li> </ul>         |  |  |  |  |
| Heterotrophic respiration | CENTURY-like model                                                                                                                                                                                          |  |  |  |  |
| Allocation                | <ul> <li>Allocation to leaves/stems/roots function of resources: water, light, nutrients (Tilman 1998)</li> <li>8 pools of living biomass</li> </ul>                                                        |  |  |  |  |
| Phenology                 | <ul> <li>Degree-day model for leaf onset, accounting for soil moisture, tuned<br/>at a global scale by using satellite data</li> <li>Senescence: soil moisture and temperature are accounted for</li> </ul> |  |  |  |  |
| Competition               | Grass/tree competition and competition between tree species     described in LPJ                                                                                                                            |  |  |  |  |
| Fires                     | • Fire occurrence described in LPJ                                                                                                                                                                          |  |  |  |  |
| Carbon storage            | <ul> <li>Litter (above/below ground, structural/metabolic, natural/agricultural)</li> <li>3 soil organic matter pools (active, slow, passive)</li> </ul>                                                    |  |  |  |  |



06.09.2005





06.09.2005

ALTERRA

KNMI

# Modelling of the carbon cycle in the geoland project



**Representation of land surface patchiness** 

#### □ Usefulness of tiling

#### Herbaceous classes of ECOCLIMAP: Fraction of type 2 can be high





#### <u>8 tiles:</u>

bare soil (and rock/snow)
Deciduous forests
Coniferous forests
Evergreen forests
grass C3
grass C4
crops C3
crops C4

Jean-Christophe Calvet Météo-France

S. Lafont

# geoland

# Modelling of the carbon cycle in the geoland project



**VALIDATION: LAI** 



Gibelin et al. 2005

06.09.2005

ALTERRA

KNMI

**Observatory Natural Carbon Fluxes** 





VALIDATION: LAI





#### Zonal mean of the maximum of LAI

simulated by ISBA-A-gs (mean 1986-1995), ISLSCP-II data set (mean 1986-1995), MODIS data set (mean 2001-2004), ECOCLIMAP data set (climatology).

Gibelin et al. 2005

**Observatory Natural Carbon Fluxes** 





#### **VALIDATION: LAI**





Correlation of the monthly LAI anomaly (difference between monthly LAI and the mean annual cycle) between ISBA-A-gs and the ISLSCP-II data (1986-1995).

06.09.2005





#### VALIDATION: LAI





Monthly time series of LAI from ISBA-A-gs and ISLSCP-II over Southern Africa [-35°N:-15°N, 10°E:40°E]

Gibelin et al. 2005





**VALIDATION: LAI** 





Relative anomaly of LAI (%) versus precipitation anomaly (mm d<sup>-1</sup>)

(blue boxes: ISLSCP2 ; red dots: ISBA-A-gs ; green bars: precipitation)

Gibelin et al. 2005

#### **Observatory Natural Carbon Fluxes**





**VALIDATION: LAI** 





Start of the growing season (mean 1986-1995) simulated by ISBA-A-gs and observed in ISLSCP-II

Gibelin et al. 2005

**Observatory Natural Carbon Fluxes** 





VALIDATION: FaPAR



ORCHIDEE



60

120

60



2003 FaPAR anomaly: ORCHIDEE (2003-1972/2002) MODIS (2003-2000/2002) – Reinstein

N. Viovy

06.09.2005

**Observatory Natural Carbon Fluxes** 





VALIDATION: water flux comparison with operational models





Comparison of the evapo-transpiration flux (JJA) of ISBA and ISBA-A-gs

**Observatory Natural Carbon Fluxes** 

A.-L. Gibelin Jean-Christophe Calvet

Météo-France





#### **VALIDATION:** ground-based flux measurements



Average diurnal cycle (JJA)



06.09.2005

ALTERRA

KNMI

**Observatory Natural Carbon Fluxes** 

Jean-Christophe Calvet

Météo-France

N. Viovy



06.09.2005

ALTERRA

KNMI

# Modelling of the carbon cycle in the geoland project



#### **VALIDATION:** ground-based flux measurements



Validation of the ORCHIDEE fluxes by using more than 30 FLUXNET sites: Average seasonal cycle

Observatory Natural Carbon Fluxes

Jean-Christophe Calvet Météo-France

N. Viovy





#### **VALIDATION:** crop production



1900-2000 crop production simulated by the STICS module of ORCHIDEE over Europe: the management effect

N. Viovy

06.09.2005

ALTERRA

KNMI

# geoland

# Modelling of the carbon cycle in the geoland project

#### **VALIDATION:** crop production





Wheat yield (t ha<sup>-1</sup>) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5

**Observatory Natural Carbon Fluxes** 





#### **VALIDATION:** crop production





Maize yield (t ha<sup>-1</sup>) estimated by ISBA-A-gs for the area of Toulouse, by assuming a Harvest Index of 0.5

**Observatory Natural Carbon Fluxes** 





#### **Data Assimilation**

#### The variational approach



06.09.2005

KNMI

FCMWF

ALTERRA

**Observatory Natural Carbon Fluxes** 



KNMI

### Modelling of the carbon cycle in the geoland project



#### **Data Assimilation**

#### A simplified algorithm (adapted from Balsamo and Bouyssel)







#### **Data Assimilation**

A simplified algorithm (adapted from Balsamo and Bouyssel)

Two main hypotheses have to be validated

### •**TL** (linearity)

**Observatory Natural Carbon Fluxes** 

 ⇒ Minimization of the cost function with a look up table ...
 ⇒ ... + comparison to a sequential stochastic approach (Ensemble Kalman Filter, not shown)



- •2D (horizontal decoupling)
  - ⇒ Verified at our spatial scale ?



Jean-Christophe Calvet Météo-France

L. Jarlan



06.09.2005

KNMI

### Modelling of the carbon cycle in the geoland project



#### **Data Assimilation**

#### Application to the SMOSREX fallow



**Observatory Natural Carbon Fluxes** 

L. Jarlan

Météo-France



KNMI

### Modelling of the carbon cycle in the geoland project



#### **Data Assimilation**

#### Application to the SMOSREX fallow







#### **Prospects**

- ISBA-A-gs / C-TESSEL (Météo-France / ECMWF)
  - Roots
  - ≻ Wood
  - Soil carbon
  - ≻ NPP
- Representation of land surface patchiness
  - Regional applications (5-10 km) at Météo-France and LSCE
- VALIDATION:
  - Test of C-TESSEL global simulations of LAI
  - Test of ISBA-A-gs and C-TESSEL using the FLUXNET data
- Data Assimilation
  - ISBA-A-gs: Use of a 2D assimilation system over South-Western France using SPOT/VGT data (1999-2005)
  - Global assimilation of LAI products in ORCHIDEE and C-TESSEL

06.09.2005

ALTERRA

KNMI

### Integrated GMES Project on Landcover and Vegetation

#### Thank you for your attention!



geoland coordinators:







**Contact:** 

**Jean-Christophe Calvet** 

+33 561079341

calvet@meteo.fr