Challenges in Atmospheric Chemistry Modeling

Guy P. Brasseur Max Planck Institute for Meteorology

Introduction

Fundamental Equations

- Numerical Solutions
- Illustrations

Acknowledgements

- Claire Granier, CNRS and CIRES.
 - Louisa Emmons, NCAR
 - Douglas Kinnison, NCAR
 - Martin Schultz, MPI-M
 - Olaf Stein, MPI-M

Part 1. Introduction

Chemical Transport Models

- The goal of CTMs is to calculate the spatial distribution and temporal evolution of chemically interactive species.
- Models are often used to diagnose observations, test hypotheses, calculate global and regional chemical budgets, and simulate the past and future evolution of the chemical composition for prescribed conditions (evolving boundary conditions).
- The calculation of atmospheric transport requires that dynamical parameters be specified.
- Chemical transport models are often coupled 'on-line' to general circulation models.

Part 2. Fundamental Equations

Fundamental Equations Governing the Atmosphere Evolution

$$\frac{\partial \vec{v}}{\partial t} = -\vec{v} \cdot \nabla \vec{v} - \frac{1}{\rho_a} \nabla p - g\vec{k} - 2\vec{\Omega} \times \vec{v} + \vec{F}_{visc}$$

(1), equation of motion (3 components)

 $\frac{\partial \rho_a}{\partial t} = -\nabla \cdot \rho_a \vec{v} \qquad (2), \text{ air mass conservation}$

 $\frac{\partial \theta}{\partial t} = -\vec{v} \cdot \nabla \theta + Q_{\theta}$ (3), first law of thermodynamics

 $\frac{\partial r_n}{\partial t} = -\vec{v} \cdot \nabla r_n + Q_{r_n} \quad \text{(4), water mass mixing ratio} \\ \text{conservation}$

Q represents the loss/production rate

 $\frac{\partial s_{[\eta]}}{\partial t} = -\vec{v} \cdot \nabla s_{[\eta]} + Q_{s_{[\eta]}}$ (5), gases/aerosols mass mixing ratio conservation

Continuity Equation for Chemical Species

Mathematically describes the dynamical and chemical processes that determine the distribution of chemical species

flux form : Transport $\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{v}) = S_i$ Chemical forcing

advective form :

$$\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \nabla f_i = \frac{S_i}{\rho_a} \quad \text{or } df_i/dt = S_i/\rho_a \quad (f_i \text{ is a conserved quantity along the motion})$$

where,

 ρ_i is the mass (or number) density of species i ρ_a is the air mass (or number) density

 $f_i = \frac{\rho_i}{\rho_a}$ is the mass (or volume) mixing ratio

 S_i is the production and loss rate of species i

 $\ensuremath{\mathbf{v}}$ is the wind velocity vector

Chemical Composition of the Atmosphere

Concentration ρ_i of atmospheric trace gas *i*: (*i*=1,*N*)

- Change in concentration is determined by
- •Emissions
- •Deposition

Transport at various scales
[resolved by the spatial resolution of the model and subscale (parameterisation)]
Chemical and photochemical reactions

On-line (coupled) versus off-line models

- In "off-line" models, transport is driven using outputs provided at regular intervals (e.g., 3 hours) by an atmospheric general circulation model or by atmospheric analyses (data assimilation).
- In "on-line" models, the solution for chemical species is obtained simultaneously with the solutions of the dynamic equations. This has some considerable benefits:
- ^{a)} Uses the same spatial and temporal resolution (e.g., 20 min)
- b) Uses exactly the same coordinate system
- _{c)} Accounts for feedbacks between dynamics and chemistry.
- d) More easy treatment of the model output (real time weather and air quality forecasts).
- ^{e)} But... can be computationally expensive.

Part 3. Numerical Solutions

Solving the Continuity Equations for N Chemical Species

- *N* species leads to *N* coupled non-linear equations which rarely have an analytic solution.
- System is solved with numerical methods at discrete locations ("grid-points").
- Differentials replaced by finite differences.
- Finite resolution (time or space) implies that some transport processes are unresolved (e.g. diffusion).
- Chemistry and transport handled as separate operations.

Part 3. Numerical Solutions

- 1. Transport
- 2. Chemistry
- 3. Surface Processes

Advection

•Desired properties of an advection scheme:

- Accuracy
- Stability
- Mass conservation
- Monotonicity (shape preservation)
- Positive definite fields
- Local
- Efficient

Three groups of algorithms:

- •Eulerian
- •Lagrangian
- •Semi-Lagrangian

Advection

•Eulerian Methods:

- •The Euler forward (explicit) scheme is unconditionally unstable
- •The Upwind method is diffusive
- •The Leapfrog method is not monotonic
- •Improved methods: Smolarkiewicz, Bott, Prather (transport of moments).
- •The CFL condition must be verified to ensure stability.

$$\frac{|c|\Delta t}{\Delta x} \le Const, with \ Const \approx 1$$

•Lagrangian methods: Simple concept, but air parcels can 'bunch up' in certain areas during the integration. (no mixing)

•Semi-Lagrangian methods: Not limited by timestep, but not mass conserving, unless adapted (e.g., Lin and Rood)

Semi-Lagrangian Transport

$$\mathbf{x}_0 = \mathbf{x} + \int_t^{t - \Delta t} \mathbf{v}(\mathbf{x}, t) dt$$

Calculation of back trajectory requires iterations (since wind speed v is not known everywhere along the trajectory)

Accuracy depends greatly on Interpolation scheme used to determine the mixing ratio at departure point.

Common in modern GCMs, but not mass conservative.....

Conservative Semi-Lagrangian Methods

- Rather than considering variables at specific grid points, one can transport *integral* quantities or *average* values over finite cell volumes.
- In finite-volume-based Semi-Lagrangian methods, the value of the advected field at a new time level is just the average value of the departure cell defined by its upstream position at the previous timestep.
- Lin and Rood (1996) have developed a mass conservative finite volume semi-Lagrangian method, in which the boundaries (" departure walls" rather than "departure points") of the grid volumes are transported to the next step ("arrival walls"). Mass is conserved in the box during a timestep. The CFL restriction does not apply.

Some sub-grid Process involved in Gases/Aerosols Transport

Sub-grid Convective Transport

Cloud venting is a very important mechanism transporting pollutants from the PBL to the upper levels, affecting the chemistry of troposphere and the biogeochemical cycles.

Deep Convective Transport of CO 21Z 24 Sep 2002

CO (ppb)

Part 3. Numerical Solutions

- 1. Transport
- 2. Chemistry
- 3. Surface Processes

Tropospheric Chemistry

Chemistry: Solving $df/dt = S/\rho$

- This is a system of N equations (N being the number of chemical species in the model – typically 50 to 150).
- The system is non-linear and 'stiff' (time constants of species varying from microseconds to centuries).
- The numerical method must be stable and accurate for a timestep that is sufficiently large for the system to be efficiently integrated.

Chemical forcing (S) (i.e. production and loss)

For N species, A and B are NxN matrices

Chemistry: Solving $df/dt = S/\rho$

Simplest method is fully explicit :

 $\mathbf{f}^{n+1} = \mathbf{f}^n + \Delta t \cdot \mathbf{S}(t_n, \mathbf{f}^n) / \rho_a$ Euler Forward

 \mathbf{f}^{n+1} expressed in terms of known quanities Requires very small time-steps.

Fully implicit is stable for any Δt : $\mathbf{f}^{n+1} = \mathbf{f}^n + \Delta t \cdot \mathbf{S}(t_{n+1}, \mathbf{f}^{n+1}) / \rho_a$ Euler backward

However, S contains non-linear terms, and accuracy is comprimised for large Δt . Iterative techniques are often used to

improve the accuracy of implicit methods.

Prominent is the Newton-Raphson iteration which requires that the Jacobian matrix of the chemical system be calculated. The convergence is achieved for sufficently small timesteps

Chemistry: Solving $df/dt = S/\rho$

- A multi-step method very appropriate for "stiff" systems has been developed by **Gear** (1971).
- This algorithm is composed of the so-called backward difference formulas up to order six.
- The method is extremely robust and stable but does require solving nonlinear algebraic systems (like Euler backward algorithm).
- Time step and order of the method are continuously adapted to meet user-specified solution error tolerances.
- Codes require much computer memory and tine; not practical for multi-dimensional models.

Chemistry: Solving $df/dt = S/\rho$: Chemical Families

Species are grouped together within specified chemical familes Because of the longer lifetime associated with the families, relatively large timestep can be use to integrtate the equations

Partitioning between members of the family are made by assuming equilibrium conditions for fast reactive species within the family.

Example: $NO_x = NO + NO_2$

$$\frac{d\text{NO}}{dt} = \text{Emissions} + j_{NO_2} \cdot \text{NO}_2 - \text{NO}(k_1 \cdot \text{O}_3 + k_2 \cdot \text{HO}_3)$$
$$\frac{d\text{NO}_2}{dt} = \text{NO} \cdot (k_1 \cdot \text{O}_3 + k_2 \cdot \text{HO}_3) - j_{NO_2} \cdot \text{NO}_2 - k_3 \cdot \text{NO}_2 \cdot \text{OH} - \text{deposition}$$
$$\frac{d\text{NO}_x}{dt} = \frac{d\text{NO}}{dt} + \frac{d\text{NO}_2}{dt} = \text{Emissions} - k_3 \cdot \text{NO}_2 \cdot \text{OH} - \text{deposition}$$

Part 3. Numerical Solutions

- 1. Transport
- 2. Chemistry
- 3. Surface Processes

Surface exchanges: emission-deposition

Vegetation and wet skin fraction

Model surface description

Emissions

Typical categories of "bottom-up" emissions inventories include:

- fossil fuel combustion
- biofuel combustion
- vegetation fires
- biogenic emissions (plants and soils)
- volcanic emissions
- oceanic emissions
- agricultural emissions (incl. fertilisation)

etc.

Emissions of Carbon Monoxide

/seratch/hmD/m214074/25y-a2/ha0006.ne

m214074 16.02.2004 14:37

Monthly Carbon Monoxide Emission Estimation for 2002 Hybrid remote sensing fire products: GOES WF_ABBA AVHRR and GOES (INPE) MODIS (NASA) From INPE/CPTEC, Brazil

Model output for PM2.5 column – Aug 2002 (INPE, Brazil)

Dry Deposition

Transport of gaseous and particulate species from the atmosphere onto surfaces in the absence of precipitation

Controlling factors: atmospheric turbulence, chemical properties of species, and nature of the surface

Deposition flux:
$$F = -v_d C$$

 v_d : deposition velocity C: concentration of species at reference height (~10 m)

Wet deposition

Part 4: Illustrations

- Global Tropospheric Chemistry (MOZART-2 and –4)
- Stratospheric Chemistry (MOZART-3)

Surface to 30 km

MOZART-2: Model setup

- Uses analysed winds (e.g. ECMWF, NCEP) or GCM output (T, q, u, v, p_s, ...)
- Standard chemistry scheme comprises of 65 species and 170 reactions. Chemistry is easily adaptable by means of a preprocessor code
- Runs efficiently on almost any computer platform (parallel and vectorized)
- Flexible output specification; postprocessing tools available

Brasseur et al., JGR, 1998; Horowitz et al., JGR, 2004.

Parameterisation

S

- Model physics and hydrological cycle based on CCM model (Rasch et al., 1997)
- Boundary layer: Holtslag and Boville, 1993
- Advection: Lin and Rood, 1996
- Convection: Zhang and McFarlane, 1995; Hack, 1994
- Dry deposition: Wesely, 1989, Hess et al., 2000
- Scavenging: Giorgi ad Chameides, 1985; Brasseur et al., 1998
- Lightning NOx production: Price, Penner, and Prather, 1997

MOZART-4: New Features

- Extended chemical mechanism (hydrocarbons)
- Interactive biogenic emissions and updated anthropogenic and fire emissions.
- New upper boundary conditions in the stratosphere
- SYNOZ (tracer with a specified source region (30S-30N, 10-70 hPa) and rate (400-500 Tg/yr); relaxed to 25 ppbv below 500 hPa)
- Improved radiative parameterisation for photolysis
- Aerosols coupled with gas phase chemistry
- Dry deposition interactive
- Improved albedo

Chemical Mechanism (MZ-4)

- 97 compounds (with aerosols and no OX group)
- New hydrocarbons (instead of C4H10)
- Terpene oxidation mechanism updated with new lab data
- Minor corrections and rates updated to JPL 2002
- Photolysis rates updated to TUV
- OX as group, or O_3 , $O(^1D)$, O each transported
- Aerosols: as in *Tie et al.* [2005], with updates
- Heterogeneous rxns: HO2, NO2 [NO3, N2O5 in MZ2]
- Dust: offline monthly means [from N. Mahowald]
- SYNOZ available (constrains the cross tropopause flux)

Emission

S

MOZART-2

Based on EDGAR-2, Hao and Liu biomass burning climatology

MOZART-4

POET (EDGAR-3), biomass burning based on satellite fire counts

Ocean Emissions

MZ-2: CO, C2H6, C3H8, C2H4, C3H6, C4H10, CH3OH, Acetone

MZ-4: CO

Species	MOZART-2	MOZART-4
NO (TgN/yr)	40.8	45.3
CO (Tg/yr)	1194.7	1357.0
C2H6 (Tg C/yr)	9.6	9.3
C3H8 (Tg C/yr)	8.3	8.5
C2H4 (Tg C/yr)	19.2	14.3
C3H6 (Tg C/yr)	8.5	4.6
C4H10 (Tg C/yr)	29.9	
BIGALK (Tg C/yr)		67.8
BIGENE (Tg C/yr)		7.0
TOLUENE (Tg C/yr)		30.7
ISOP (Tg C/yr)	410.5	452.1
C10H16 (Tg C/yr)	129.1	65.7
CH2O (Tg C/yr)	2.8	1.7
CH3COCH3 (Tg C/yr)	23.0	17.9
CH3OH (Tg C/yr)	116.9	89.9
C2H5OH (Tg C/yr)		5.3
CH3CHO (Tg C/yr)		5.4
MEK (Tg C/yr)		3.1

On line Emissions – Isoprene and Terpenes

- Online Calculation of isoprene (and monoterpene) emissions based on MEGAN (Alex Guenther and others)
- Input
 - Temperature, Radiation, ...
 - Global distribution of emission factors
 - Global maps of Leaf Area Index (LAI)
 - Global maps of Plant Functional Type (PFT)
- > LAI and PFT from CLM (Community Land Model) AVHRR
- > LAI and PFT from Yuhong Tian (2004) MODIS
- > LAI and PFT from Peter Lawrence (CU) MODIS

Effect of Vegetation Maps

Global annual emissions

CLM: 304 Tg C/yr

Lawrence: 466

Tian: 599

> Using Lawrence's maps in MZ4

1e-15 1e-13 1e-11 7.5e-11 2.5e-10 7.5e-10 kg/m²/s

Vertically distributed emissions

Averages of July and August, 2004 - emissions only at surface vs. distributed over 0-9 km

Impact of Upper Boundary

SYNOZ

- Since the use of analyzed winds (e.g., NCEP) in MOZART usually results in too large stratospheric flux of ozone, SYNOZ is used
- SYNOZ is a tracer with a specified source region (30S-30N, 10-70 hPa) and rate (400-500 Tg/yr); relaxed to 25 ppbv below 500 hPa
- Ozone is set to SYNOZ above the tropopause, if SYNOZ > 100 ppbv
- O3RAD is set to the stratospheric ozone climatology and used for photolysis
- Requires 3-5 years spin-up for IC (provided)

Simulated Aerosol Species

- SO₂, SO₄, DMS
- NH₃, NH₄, NH₄NO₃
- OC (hydrophobic, hydrophilic)
- BC (hydrophobic, hydrophilic)
- Sea-salt (4 bins)
- SOA

SO₄ at RSMAS sites

Overall Effect of Aerosols [FTUV: Aerosols vs no aerosols]

OH, Aer-NoAer [%], August, Ion average

/dato/mz4/massm/ha0003.ns

Results from MOZART-2

Nitrogen Oxides (pptv) May

Example: Air Pollution and Biomass Burning

Chemical Weather seen from Space

Model

PAN

MOPITT - October 2000

MOPITT 700 hPa 200010

MOPITT 250 hPa 200010

MOZART/mz4.3-ncep-gapbb 700 hPa 200010

MOZART/mz4.3-ncep-gapbb 250 hPa 200010

CMDL CO - MZ4 - N.Atlantic

Comparison to aircraft data

H2O2

UC-Irvine HCs in remote

CH2O

Ozone (ppbv) -- May Surface

Ozone (ppbv) -- May 500 hPa

Ozone

TRACE-P,PEM-West-A,PEM-West-B

45.1 44.4

55.1 56.6 0.62

> 47.8 42.0

56.6

54.1

0.87

67.7 66.4

60.1 60.9 0.64

73.4

73.3 73.6 0.82

Ozone Lindenberg, May 2003

MOZART-2 Comparison with AIRS: July 2001 1-5 p.m. Surface O₃ (ppbv)

Isoprene Nitrates

ISOPO2 + NO \rightarrow .08*ONITR + .92*NO2 + HO2 + .55*CH2O + .32*MVK + .37*HYDRALD

 $ONITR + OH \rightarrow HYDRALD + .4*NO2 + HO2$

 $ONITR + NO3 \rightarrow HYDRALD + NO2 + HO2$

ISOPNO3 + NO → 1.206*NO2 + .794*ONITR + 0.794*HO2 + .072*CH2O + .039*MVK

 $ISOPNO3 + NO3 \rightarrow$

 $ISOPNO3 + HO2 \rightarrow .206*NO2 + .794*ONITR +$

Substantial O₃ sensitivity to the uncertain fate (and yield) of organic isoprene nitrates

Change in July mean 1-5 p.m. surface O_3 when isoprene nitrates (at 12% yield) act as a NO_x sink

→ 4-12 ppbv impact!

MOZART-2

Fiore et al., JGR, 2005

Surface Ozone July 1890

03_1xco2emi1890 [ppb], ca. 996.141 hPa

Surface Ozone July 2000

03_1xco2emi2000 [ppb], ca. 996.141 hPa

m218003 04.02.2004 14:50

Surface Ozone July 2100

A2 Scenario SRES

Surface to 80 km

MOZART-3 Set-up

- Extension of Tropospheric MOZART-2 and -4
 - •106 Species Mechanism (250 chemical and photochemical reactions- JPL-02).
 - CO, CO₂, CH₄, H₂O, N₂O, CFC-11, CFC-12, CFC-113, HCFC-22, CH₃Cl, MCF, CCl₄, CH₃Br, H1211, H1301, organics
 - Radicals contained in: Ox, HOx, NOx, ClOx, and BrOx families
 - Heterogeneous Chemistry: Includes sulfate, nitric acid hydrate, and H_2O -ice aerosols

MOZART-3 Set-up

• Extension of Tropospheric MOZART-2 and -4

•Look-up table parameterization (STUV; 4-stream; 121-750nm)

- Surface Emissions (POET; C. Granier)
- Meteorological Fields
 - WACCM1b (2.8x2.8; 66 levels, 0-150 km)
 - ECMWF Operational (1.9 x 1.9; 60 levels, 0-65 km)
 - ECMWF ERA-1 (TBD)

Courtesy of Laura Pan, NCAR

Mozart-3 / WACCM1b - June

Ozone, molecules cm⁻³

H₂O, ppmv

Comparison of Long-lived Tracers - CH₄ (ppmv) January

July

ECMWF Age-of-Air

July

Comparison of HALOE and MZ3/WACCM H₂O (ppmv)

100 hPa

Comparison of HALOE and MOZART3/WACCM H₂O – Park et al. 2003

MOZART-3 / WACCM-01 EQ, Tape Recorder UARS / HALOE H₂O (ppmv); SST years 89-90

Randel, et al., JGR, 106, 14313, 2001

Using MZ3 / MATCH CCM3.6 column physics

Comparison of Long-lived Tracers - H₂O (ppmv)

10

100

90 -90

-45

0

latitude

45

Pressure,

10

100

-90

-45

0

latitude

-45 0 45 90

latitude

6.00 42.00 86.00 42.00 86.00 42.00

10

90 -90

45

Lightning NOx Penetration into the LS??

July

468024680246802468024680

Comparison of Long-lived Tracers - O₃ (ppmv)

O₃ at 10hPa

Modeling the Antarctic ozone hole 2001/2002

Heterogeneous Chemistry Module

NCEP CPC Temperatures, 2001 80S, Zonal Mean, 50hPa

Total Column Ozone (DU) September 25, 2001

 1.25° lon x 1.0° lat

1.9° lon x 1.9° lat

EPTOMS

MZ3/ECMWF

P. Newman (NASA), E. Nash (SSAI), R. Nagatani (NCEP CPC)

Total Column Ozone (DU) September 25, 2002

 1.25° lon x 1.0° lat

1.9° lon x 1.9° lat

EPTOMS

MZ3/ECMWF

OZONE: Point-by-point time series, lower strat, SH

OZONE: With ECMWF winds and temperature, the model underestimates ozone depletion at 350-450 K. Ozone destruction starts too late in the season.

Model at 325 K agrees well with the observations – but the large variability seen in the model in March at 325 & 350 K is not observed in the data.

OZONE: Point-by-point time series, lower strat, SH

OZONE: With winds and temperature taken from the WACCM model, MOZART-3 *does* capture the ozone depletion at 400-450 K.

Inorganic Chlorine (ppbv)

Mozart

The End: Thank You.