Severe weather warnings at the Hungarian Meteorological Service: Developments and progress

• István Ihász Hungarian Meteorological Service
• Edit Hágel Hungarian Meteorological Service
• Balázs Szintai Department of Meteorology, Eötvös Loránd University, Budapest
Topics

- Limited area ensemble prediction by downscaling of ECMWF EPS forecasts
- Limited area ensemble prediction by downscaling of ARPEGE EPS forecasts
- Case studies
- Verification
- Future plans
Severe weather warnings
Available NWP products

ALADIN 0-48 h
ECMWF deterministic model 0-240 h
ECMWF EPS model 0-240 h
SRNWP PEPS
COSMO LEPS /some products/
Met Office, DWD, etc /some products/
Ensemble forecasts

• **Probabilistic forecasts:**
 predict not only the future state of atmosphere, but the probability of certain events as well

• Perturbed initial fields \Rightarrow several forecasts

• Two main types:
 - Global EPS
 - LAMEPS
Case studies

- LAMEPS runs: forecasting extreme events

 Three case studies:
 - **18 May 2005** (cold front + supercell)
 - **11 July 2005** (mediterranean cyclone)
 - **22 August 2005** (mediterranean cyclone)

- **Visualization:**
 - EPS plume, meteogram, Extreme Forecast Index, etc
 - Stamp diagrams
 - Probability maps

- **Verification:**
 - Talagrand diagrams
 - ROC diagrams
ALADIN/HU model

- Model used: ALADIN (spectral) limited area model
- Horizontal resolution: 12km
- Vertical resolution: 37 levels
Limited area ensemble prediction by downscaling of ECMWF EPS forecasts

ECMWF/ALADIN LAMEPS

Global EPS
(50 members)

Clustering
(10 representative members)

ALADIN runs
Clustering method

- **Clustering**: making groups of the ensemble members
- Hierarchical method
- **Parameters**: geopotential, relative humidity, wind components
- **Levels**: 500, 700, 850 hPa
- **Clustering times**: 12 UTC: +60, +84 h
 00 UTC: +72, +96 h
- Two clustering domains
- 10 clusters ⇒ 10 representative members
- **Three experiments**:
 1) Bigger domain
 2) Smaller domain
 3) 100 members by joining the 00 UTC and 12 UTC ECMWF EPS runs
Limited area ensemble prediction by downscaling of ARPEGE EPS forecasts

ARPEGE/ ALADIN LAMEPS

Method:
- direct downscaling of a global ensemble system with the use of the ALADIN limited area model *(no local perturbations added!)*

The global ensemble system:
- an ARPEGE based global short range ensemble system *(called PEACE)* running operationally at Meteo-France
Downscaling ARPEGE EPS(2)

- The initial perturbations of the global ensemble system are based on targeted singular vectors (SVs)
- What is the impact of using different target domains and target times during the global singular vector computation?
 ⇒ Sensitivity studies with the use of different target domains and target times
- ARPEGE EPS then ALADIN EPS (coupled from the global ensemble members) integrations
Downscaling ARPEGE EPS(3) Sensitivity studies

Target domains:
- domain 1: Atlantic Ocean and Europe
- domain 2: Europe and some of the Atlantic Ocean

Target times:
- 12 hours
- 24 hours

The target domain used operationally for SV computation in the PEACE system.

The target domain used for SV computation in our experimental setup.
Sensitivity studies

Case studies (different meteorological situations)
Experiments for longer periods (10 days in the summer, 30 days in the winter)

• **Large sensitivity** was found in terms of both target domain and target time

 Target time:
 - using 24h resulted bigger spread compared to the use of 12h

• **Target domain:**
 - Using a very big target domain during the global SV computation resulted small spread in most cases
 - With the use of the smaller target domain we obtained bigger spread and improved forecasts as well
Case study 18 May 2005 (cold front + supercell)

OBSERVATIONS 2005/05/18

24h TOTAL PRECIPITATION
2005/05/18 06 UTC - 2005/05/19 06 UTC

24h MAX WINDGUST
Case study 18 May 2005 EPS plume
00 & 12 UTC 16 May 2005

10th Workshop on Meteorological Operational Systems, Reading
Case study 18 May 2005 ECMWF Extreme Forecast Index / EFI /
00 & 12 UTC 16 May 2005 Precipitation

Windgust
Case study 18 May 2005 ECMWF EPS stamp diagram
precipitation: 06 UTC 18 May 2005 - 06 UTC 19 May 2005
Case study: 18 May 2005, some COSMO LEPS products
Permission by Andrea Montani

Precipitation:
- Prob 20 mm
- Prob 50 mm

Representative members

Monday 16 May 2005 12 UTC COSMO-LEPS Forecast 1h (42-66)
Surface: accumulated total precipitation more than 20 mm probability in %

Monday 16 May 2005 12 UTC COSMO-LEPS Forecast 1h (42-66)
Surface: accumulated total precipitation more than 50 mm probability in %
case study: 18 May 2005 ECMWF

precipitation of the ECMWF’s EPS 10 representative member
case study: 18 May 2005 ECMWF/ ALADIN
precipitation of the ALADIN forecast
case study: 18 May 2005 ARPEGE/ALADIN
precipitation of the ALADIN forecasts

24h precipitation
ALADIN EPS
2005/05/18 06UTC -
2005/05/19 06UTC
2005/05/16 18UTC run
case study: 18 May 2005 ECMWF, ECMWF/ ALADIN & ARPEGE/ ALADIN
precipitation: probability charts / limit 10, 20 30, 40 mm

10th Workshop on Meteorological Operational Systems, Reading
case study: 18 May 2005 ECMWF
windgust of ECMWF’s EPS 10 representative member
case study: 18 May 2005 ECMWF/ALADIN
windgust of the ALADIN forecast
case study: 18 May 2005 ARPEGE/ALADIN
windgust of the ALADIN forecasts
case study: 18 May 2005 ECMWF, ECMWF/ ALADIN & ARPEGE/ ALADIN
wind gust: probability charts / 10, 20, 30, 40 m/s </
Verification of the ECMWF & ECMWF/ ALADIN & ARPEGE/ ALADIN

Talagrand diagrams:

• Geopotential height of the 500 hPa level
• Temperature of the 850 hPa level
• 10m wind
• 2m temperature

ROC diagrams:

• 850 hPa temperature anomaly
• 10m wind
ECMWF EPS
Verification - Talagrand diagram / 3 case studies
ECMWF/ ALADIN
Verification - Talagrand diagram / 3 case studies

ALADIN
\[t+00h \]

ALADIN
\[t+18h \]

ALADIN
\[t+42h \]

ALADIN
\[t+66h \]
ARPEGE/ ALADIN
Verification - Talagrand diagram/ 30 case studies

ALADIN coupled by operational PEACE forecasts (t+60h)
ARPEGE/ALADIN
Verification - Talagrand diagram/30 case studies

ALADIN coupled by the experimental setup (t+60h)
Conclusion

• Better representation of the precipitation and windgust fields
• Quite similar results from downscaling ECMWF and ARPEGE
• Positive feedback from our forecasters
• We also found that it seems to be difficult to obtain significant improvements with the simple downscaling of the global ensemble system

Future plans

• Start the experiments with the computation of local (ALADIN native) perturbations
 – computation of ALADIN SVs
 – breeding method