The Energy Markets

Use and interpretation of medium to extended range products

ECMWF, Reading, 14th of November 2005

drs. Stefan Meulemans, MSc Sempra Energy Europe Ltd. London

smeulemans@sempracommodities.com

 Major global player in metals, polymers, gas, oil and electricity markets

 Offices in New York, London, Houston, San Diego, Singapore, Geneva, Calgary and Toronto

Sempra Energy Europe Ltd.

Speculative trading on gas, oil and electricity markets
Using information to anticipate market moves
Weather major fundamental

Energy markets

- Assessing the supply and demand of the main energy sources
- Determining a price based on all available fundamentals
- Often volatile markets compared with traditional markets

Futures and forwards

Day ahead (EC)
Week ahead (EC)
Month Ahead (EC)
Cal ahead

Supply and demand

- Supply and demand determine the forward electricity prices
- Traded contracts are day-ahead, weekahead, month-ahead etc.
- Supply: wind and hydro
- Demand: temperature important

Nordic markets

- Weather crucial due to very high hydro capacity
- Market very dependent on ECMWF model

Hydro

- ECMWF forecasts have to be transposed into a precipitation energy forecast
- We also need an estimate of the snow cover and the expected melt, based on the temperature
- Alps, Pyrenees and Scandinavia

Hydro Reservoirs Scandinavia

Example Q106 Nord Pool

Dry weather in Nordic...

Wet weather in Nordic...

ECMWF Nord Pool

- Data is directly given in GWh. One run moves the market. Ensemble very important.
- Countries around Pyrenees and Alps only influenced by major hydro events, as wind and non-renewable power production is more widely used

Example Point Carbon

Precipitation energy and date

Histogram precipitation energy total

NAO outlook

- Development of Nordic NAO
- ECMWF data day 10 or beyond to calculate the NAO
- Current NAO value known, so not of interest

ECMWF cluster outlook

Wind

- Short range deterministic – storms!
- Mid range ensemble ECMWF

Installed wind capacity

Wind production forecasts

- Short term models for day-ahead wind production. Error should be low.
- First days deterministic ECMWF model
- Further ahead ensemble ECMWF
- Probabilistic wind forecast?
- Germany, Denmark and Spain
- Unit MWh/h

Example Point Carbon

Wind production in MWh and date

Temperature

- Very well correlated to heating and cooling demand
- Water temperature forecasts with ECMWF data
- Development of demand outlooks

Point Carbon example

Cold spell and NBP gas

Day ahead German electricity

Demand models

Main variable temperature

Demand industry and basic load

Day of the week and holidays

In case of electricity hourly load calculation

Sempra's gas model

Oil markets

 ECMWF tropical model. New hurricane track forecast immediately moves the market.

 Weekly inventories oil and natural gas make the market move. Weather data important.

Katrina and the Gulf

- Depending on track, certain oil product are influenced
- Probability outlook very important

Brent oil price since April

European gasoline contract

Emissions market

- Emission markets originated from Kyoto agreement
- Each country has a maximum allowance to emit CO₂
- If country emits more than allowed, it has to buy allowances, and vice versa

Emissions market

 Weather also important to anticipate emissions output

 ECMWF data can be translated in expected
 C02 output from
 power stations

Emissions market

Weather derivatives

 Directly linked to weather outlook. Trading HDD, CAT and precipitation indices.

 Weather markets about to develop significantly

 Weather derivatives also important to hedge other energy contracts

Converting data in HDD

 Sempra directly converts the model data in different possible scenario's for HDD and CAT.

 Mid- and long-range forecasts all needed

Risk management

- Use of long-term probabilistic outlooks
- Assess risk of certain energy scenario's
- Try to have view on weeks- and monthsahead

The Monthly Outlook for Europe Days 12-18: 21 February 2005 - 27 February 2005

Probabilistic long-range outlook

- Reduced risk on mid-range positions
- Now particularly for temperature and precipitation, but wind would be interesting too
- When signal is strong, it makes sense to take significant long or short positions

- Mid- to long-range model data very relevant to different energy commodities
- Importance of also considering the energy industry when models would be enhanced.
 E.g. probabilistic data
- Development of 30-days ensembles would interesting