Wildfires in GEMS

Johannes Kaiser

Martin Schultz, Tony Hollingsworth

Wildfires in GEMS 2nd HALO Workshop, Reading, 2005-12-12

Overview of Presentation

- Introduction
- GEMS Requirements
- Available Fire Earth Observations
- Existing Models of Fire Emissions
- Strategy Proposal
- Conclusions

Introduction

Wildfires	in GEMS		
2 nd HALO	Workshop,	Reading,	2005-12-12

Fire Emissions ...

- ... may dominate regional air quality in "severe air pollution" events
- ... may elevate background after long range transport (Stohl et al. 2001)
- ... significantly contributes to emission budgets of several gases (Kyoto, CLRTAP, ...)
- ... may influence weather by heat production and absorbing smoke.
- ... provide essential a priori information for remote sensing
- ... are variable on all time scales from hours to decades

Interannual Variability

RETRO CO emissions

2nd HALO Workshop, Reading, 2005-12-12

Slide 5

Short-term Variability: CO, CO2

Wildfires in GEMS 2nd HALO Workshop, Reading, 2005-12-12

Short-term Variability: 03

2nd HALO Workshop, Reading, 2005-12-12

Slide 7

GEMS Requirements

GEMS Required Fire Products

- Products
 - amount emitted: aerosol, trace gases
 - location, time
 - injection height
- Availability
 - global
 - near-real time and retrospectively
 - time resolution of several hours to one day

Schedule of GEMS Work at Central Site

Wildfires in GEMS	Kaiser et al.
Year 3.5 - 4 Nov 2008+ 6 mo	 Final pre-operational trials Documentation & Scientific papers
Year 2.5-3.5 Nov 2007+ 12 mo	 Produce unified reanalyses for GHG, GRG, Aerosol Build operational system, & interfaces to partners
Year 2-2.5 May 2007 + 6 mo	 Merge the 3 assimilation systems into a unified system; Upgrade the models and algorithms based on experience
<mark>Year 2</mark> May 2006+12 mo	 Produce 3 different reanalyses for GHG, GRG, Aerosol Make reanalyses available for validation by all partners Provide feedback to data providers
<mark>Year 1</mark> May 2005+12 mo	 Build and validate 3 separate assimilation systems for Greenhouse gases, Reactive gases, Aerosol. Acquire data; build web-site

2nd HALO Workshop, Reading, 2005-12-12

Schedule of GEMS Wildfire Requirements

<mark>Year 2</mark> May 2006+12 mo	 Produce 3 different reanalyses for GHG, GRG, Aerosol global emissions for 2003 of correct order of magnitude
Year 2.5-3.5	 Produce unified reanalyses for trace gases and aerosol
Nov 2007+ 12 mo	 high-resolution (temporal & spatial) global fire products for 2000–2007
Year 3.5 - 4	 Final pre-operational trials
Nov 2008+ 6 mo	 high-resolution (t&s) global fire products in NRT

Available Observations

Products from Fire EO

2nd HALO Workshop, Reading, 2005-12-12

Slide 13

GLOBCARBON Global Burnt Area Estimate

January 1998

(courtesy of Olivier Arino)

Wildfires in GEMS 2nd HALO Workshop, Reading, 2005-12-12

Some Conclusions on EO Fire Products

- No current product satisfies all GEMS requirements.
- Many existing products are inconsistent. (Boschetti et al. 2004)
- very active area of research: Several new operational products are anticipated.
 - Burnt Area from MODIS (D. Roy)
 - Fire Radiative Power from SEVIRI (M. Wooster)
 - WF_ABBA from global GEO system (E. Prins)

Collaboration with geoland community is needed.

•

Existing Models of Fire Emission

Existing Emission Models

CLAIRE 1998 – Roraima Fires Simulation using CATT-BRAMS

CLAIRE 1998 – Roraima Fires Simulation using CATT-BRAMS Eulerian Transport Model 1000 m ------ 11700 m

(produced by INPE/CPTEC, courtesy of M. Andreae, MPI Mainz)

Wildfires in GEMS	Kaiser et al.	MECHWE
2 nd HALO Workshop, Reading, 2005-12-12	Slide 19	WEGHINF

- No global operational system exists.
- (Some) severe events of pollution with aerosol and CO can be monitored and forecast with observations of fires only.
 - It is possible.
 - Fire EO input is essential.
- High temporal frequency of fire observations is important.

Strategy Proposal

Wildfires in GEMS 2nd HALO Workshop, Reading, 2005-12-12

GEMS Baseline Approach (AER)

- GWEM for amount [Hoelzemann et al. 2004]
- BUOYANT for injection height [Nikmo et al. 1999]

Extended Treatment of Wildfire in GEMS

<mark>Year 2</mark> May 2006+12 mo	 Produce 3 different reanalyses for GHG, GRG, Aerosol global emissions for 2003 of correct order of magnitude climatology: RETRO, AEROCOMM-B & MOPITT2003
Year 2.5-3.5 Nov 2007+ 12 mo	 Produce unified reanalyses for GHG, GRG, Aerosol high-resolution (t&s) global fire products for 2000-2007 burnt area, hot spots from MODIS, GLOBCARBON.
<mark>Year 3.5 - 4</mark> Nov 2008+ 6 mo	 Final pre-operational trials high-resolution (t&s) global fire products in NRT hot spots and/or FRP from MODIS,
<mark>Year 5 -</mark> 2009 -	 operational phase high-resolution global (t&s) fire products in NRT hot spots and/or FRP from MODIS, WF_ABBA and/or FRP from GEO satellites

Wildfires in GEMS 2nd HALO Workshop, Reading, 2005-12-12

Global Fire Assimilation System (GFAS)

- Single, consistent processing for all GEMS subprojects
- Evolution from climatology to existing products to radiance assimilation hidden behind constant interface

GFAS 4 GEMS

2nd HALO Workshop, Reading, 2005-12-12

Slide 25

Conclusions

Wildfires	in GEMS		
2 nd HALO	Workshop,	Reading,	2005-12-12

Conclusions

- The emission by wildfires of is one of several important crosscutting issues in GEMS.
- The emission by wildfires is ultimately needed globally in near-real time as well as with a time lag.
- No suitable wildfire emission product is available.
- Several promising developments are visible.
- We propose phased development strategy for wildfire emission modelling for GEMS:

Global Fire Assimilation System serving the GEMS subprojects, ultimately in near-real time.

- (Feedback through inverse modelling is ultimately expected.)
- We need a collaboration with land monitoring community.
- We need additional funding.

More Info

- www.ecmwf.int/research/EU_projects/GEMS
- www.ecmwf.int/research/EU_projects/HALO
- j.kaiser@ecmwf.int

