

The North American Regional Reanalysis: Results Obtained and Lessons Learned

Fedor Mesinger¹, Geoff DiMego², Eugenia Kalnay³, Perry C. Shafran⁴, Wesley Ebisuzaki⁵, Dusan Jovic⁴, Jack Woollen⁴, Kenneth Mitchell², Eric Rogers², Ernesto H. Berbery³, Michael B. Ek¹, Yun Fan⁶, Robert Grumbine², Wayne Higgins⁵, Hong Li³, Ying Lin², Geoff Manikin², David Parrish², and Wei Shi⁶

¹NCEP/EMC and UCAR, ²NCEP/EMC, ³Univ. of MD, ⁴NCEP/EMC and SAIC/GSO, ⁵NCEP/CPC, ⁶NCEP/CPC and RSIS

Potential European Regional Reanalysis Project Workshop, ECMWF, 21-22 November 2005

In 1997, during the final stages of the production of NCEP-NCAR Global Reanalysis ("GR"), exploration of a regional reanalysis project was suggested,

"particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability."

> (Report of the NCEP-NCAR GR Panel, Randy Dole, Chair)

Data Used in Glol	oal Reanalysis and Re	gional Reanalysis	
Deterret	Observed variable	C autora	
Dataset	Observed variable	Source	
Rawinsondes	Temperature, wind,	NCEP/DOE Global	
	moisture	Reanalysis (GR2)	
Dropsondes	Same as above	GR2	
Pibals	Wind	GR2	
Aircraft	Temperature and wind	GR2	
Surface	Pressure	GR2	
Geostationary satellites	Cloud drift wind	GR2	

Dataset	Details	Source	
Precipitation, disaggregated into hours	CONUS (with PRISM), Mexico, Canada, CMAP over oceans (<42.5°N)	NCEP/CPC, Canada, Mexico	
TOVS-1B radiances	Temperature, precipitable water over ocean	NESDIS	
NCEP Surface	Wind, moisture	GR2	
MDL Surface	Pressure, wind, moisture	NCAR	
COADS	Ship and buoy data	NCEP/EMC	
Air Force Snow	Snow depth	Air Force Weather Agency	
SST	1-degree Reynolds, with Great Lakes SSTs	NCEP/EMC, GLERL	
Sea and lake ice	Contains data on Canadian lakes, Great Lakes	NCEP/EMC, GLERL, Ice Services Canada	
Tropical cyclones	Locations used for blocking of CMAP precipitation	Lawrence Livermore National Laboratory	

	Climatologies	
Dataset	Used for, details	Source
Green vegetation fraction	Specification of vegetation cover extent, monthly interpolated to daily	NESDIS
Baseline snow-free albedo	Specification of land albedo, quarterly interpolated to daily	NASA

Fixed Fields

Land mask (land=1; sea=0) Vegetation type [index, 1-13] Soil type [index, 1-9] Surface slope type [index] Snow-free albedo [%] Maximum snow albedo [%] Surface roughness [m] Soil column bottom temp. [K] Number of root zone soil layers [non-dim]


```
It was a lot of work /
```

There were problems to solve,

cont'd

- Improvements/ refinements of various components of EDAS, e.g.,
 - Precipitation assimilation (additional regions, blending, ...)
 - Upgrade 3D-Var to run using the satellite bias correction for numerous additional satellites;

- Presented/ discussed RR-related work at numerous conferences
 - AMS Annual Meeting in Orlando, FL, in January 2002
 - GEWEX Mississippi River Hydrology & Climate Conference in New Orleans, LA, in May 2002
 - AMS Annual Meeting in Long Beach, CA, in February 2003
 - Climate Diagnostics Workshop in Reno, NV, in October 2003
 - AMS Annual Meeting in Seattle, WA, in January 2004
 - NARR Users Workshop, San Diego, January 2005
 AGU Spring Meeting, New Orleans, May 2005
 - Numerous contacts with potential users;
- Completed 24 years of RR production in just over 3 months, running 4 streams, on all of the previously mainframe NCEP IBM ASP

A 2D-Var 2 m temperature analysis recently implemented in the NCEP operational EDAS

 No overall advantage identified from the use of the Eta 4D-Var ("mixed resolution") compared to the Eta 3D-Var ("fine resolution"); More "things learned" [disappointments (?) cont'd]:

• While RR's 3 vs GR's 6 hr analysis frequency resulted in higher RR time resolution, it did not increase accuracy (3 hr first guess not closer to observations than the 6 hr first guess would have been)

More "things learned" [disappointments (?) cont'd]:

• No benefit identified from direct assimilation of radiances (the Eta Model top, 25 mb, too low ?);

Upper-air (T, wind), and near-surface verifications

("Near-surface": 2 m temperature and 10 m wind)

Summary, upper air and near surface:

• Just about all variables improved compared to GR, either considerably, or somewhat;

- · Improvements generally greater in winter;
- Upper air: greatest improvements in winds at the jet stream level !
- Surface temperature: improved considerably both winter and summer;

• 10 m winds: improved considerably in winter, little bit in summer

Results: Precipitation

- Several sources of precipitation
 - ConUS data with PRISM (Mountain Mapper) to improve orographic effects
 - Canada
 - Mexico
 - CMAP (combination of satellite and gauge data) over oceans; CMAP is blocked:
 - Near central areas of hurricanes (7.5 by 7.5 deg)
 - Observed precipitation > 100 mm/day
 - A 15-degree "blending belt" between 27.5 and 42.5 N, with no CMAP north of 42.5 N

Moisture budget

Roads et al. (JGR, 2003): comparison of a number of models and analyses; need to better "close the budgets"

$$\frac{\partial Q}{\partial t} + P - E - MFC = R$$

Roads et al.: 4 years of Eta operational analyses; residuals significantly smaller than GR1 and GR2

R-CDAS

- Running in near real-time (similar to the current CDAS that runs with the Global Reanalysis system),
- Precipitation:
 - CMORPH, a 1/2 hr high-resolution satellite-based dataset, replaces CMAP over oceans, used for 2003 and beyond;
 - No Canadian precipitation; using EDAS precipitation instead
 - Mexico and US (N-LDAS) precipitation in real-time;
- Data available after ~ 21 hr delay
- System, including data ingest script, created and tested
- Currently running ~ 4 days behind real time, responsibility of NCEP/CPC

Archiving

- Two (or more) archiving centers/ two have the "merged fields" + some of the special smaller sets:
 - National Climatic Data Center (NCDC);
 - National Center for Atmospheric Research (NCAR);
 - San Diego Supercomputing Center (SDSC): contacts in progress, maybe;

Summary (results)

- Long-term, consistent, high-resolution climate dataset for North America a significant improvement over earlier global reanalyses;
- Near-surface temperatures and winds closer to observations;
- Winds in the upper troposphere, in addition to land-surface hydrology over the ConUS, maybe the strongest areas of improvement;
- Improvements greater in winter than in summer;

But also a few problems/ weaknesses,

that we mostly became aware of after the

fact:

- Excessive strength of the summertime Gulf of California low-level jet, :-(NAME. Not understood at this point;
- Precipitation over Canada: the number of gauge observations available may have been insufficient to do better than the model might have done;
- Precipitation over northern Atlantic not simulated well;
- Atlantic hurricanes apparently not an RR strong feature;
- ... (TBD)

confident:

objectives set out at the outset of the project: to create a long-term, consistent, highresolution climate dataset ... as a major improvement ... fully met;

and that

the NARR will for some years to come be the best/ most accurate North American weather and climate dataset, for numerous research and application purposes

Early Usage

In contact with 20-30 groups. What are people doing? Some of the groups outside NCEP:

NARR validation West, Steenburgh, Univ. Utah

Water and energy budget, hydrologic cycle studies (predictability, climate variability, ...)
Dery, Wood, Kerr, Princeton Univ.;
Gochis, NCAR;
Korolevich et al., Nat'l Resources Canada, Ottawa;
Luo, Berbery, Mitchell, Univ. Md, College Park;

NA monsoon studies/ moisture fluxes

Salstein, Cady-Pereira, Atmos. Environm. Res., Lexington, MA

Dynamical and precip structures/ systems, 1979-2003, or specific episodes, interannual variability Caetano, Mendez, Magaña, Nat'l Univ. Mexico; Milrad, McGill Univ., Montreal; Ruiz-Barada, Nigam, Univ. Md, College Park;
Model validation, severe weather predictors Durnford, Gyakum, Atallah, McGill Univ., Montreal; Jaye, Tripoli, Univ. Wisconsin, WI;
Impact in simulation of spec. systems, in driving regional climate simulations Nunes, Roads, Kanamitsu, Arkin, Scripps ECPC, La Jolla, CA Vasić, Xue, UCLA
Wind energy assessment and air pollution transport Moon, WindLogics Inc.
Water management engineering P. Trimble, Southern Florida Water Management Directorate