

Bias Correction of Satellite Data at NCEP

Paul van Delst (CIMSS) John Derber (EMC) Russ Treadon (EMC) Kozo Okamoto (JMA) Wan-Shu Wu (EMC)

Background

Bias correction scheme in the GDAS consists of a slowly varying component and an air mass dependent component. The bias, *b*, for channel *j* is given by:

$$\boldsymbol{b}_{j} = \boldsymbol{S}_{jm} + \sum_{k=1} \boldsymbol{C}_{jk} \boldsymbol{p}_{jk},$$

- The slowly varying component s_{jm} is intended to remove the bias across a scan. It is computed at each scan position *m* from quality-controlled *O-G* accumulated over the latest 30 days, updated at every post-analysis step. This slowly varying component is very stable with time and the only significant changes occur when there is an anomaly with the instrument.
- The second bias component is expressed as a linear equation with five predictors p_{jk} . The predictors p_{jk} are computed from the first-guess *G* or updated guess *G2*. The coefficients c_{jk} are included as analysis variables, and are determined globally in the analysis along with other analysis variables.
 - CLW correction for AMSU-A ch1-4,15 is significant. Other microwave sensors have also shown strong correlation between CLW and bias.

DMSP-15 SSM/I

Dependency of observed-minus-guess brightness temperature difference (*O-G*, units are K) on CLW (kg/m2) over the ocean. The vertical and horizontal axes correspond to *O-G* and CLW. Data shown is from DMSP-15 SSM/I data after the thinning step at 00UTC on 1 July 2004.

Radiance Assimilation Monitoring

- EMC real-time monitoring webpage
 - http://www.emc.ncep.noaa.gov/gmb/gdas
- Can view evolution of bias correction terms and, in the case of the air mass correction, coefficients.
- Bias correction is stable over time.

NOAA-16 AMSU-A; CLW correction

NOAA-16 AMSU-A; CLW coefficients

NOAA-16 AMSU-A; Guess(BC)-Obs

Future Investigation

- New radiative transfer model.
- Profile training sets.
- Instrument characterisation
- Air mass predictor selection.

Community Radiative Transfer Model (CRTM)

- Absorption by atmospheric gaseous constituents, e.g. water vapour, ozone, etc. AtmAbsorption functions.
 - OPTRAN (polychromatic) is currently used.
 - OSS (monochromatic) version is also being developed.
- Scattering and absorption. AtmScatter functions.
 - Aerosols (Sea salt, organic carbon, black carbon, sulphates)
 - Clouds (Water, ice, rain, snow, graupel, hail)
- Surface Optics. SfcOptics functions.
 - Emissivity (land, ocean, snow, ice; μ W, IR)
 - Reflectivity (diffuse and direct)
- Radiative Transfer. **RTSolution** functions.
 - Layer optical depth scaled level temperatures used for RT
 - Fixed multi-stream models
 - Flexible-stream models
 - SOI model
 - Advanced doubling-adding method

AtmAbsorption

- Two methodologies
 - OPTRAN. Polychromatic
 - OSS. Monochromatic.

OPTRAN	OSS
Total channel resolution transmittance $\overline{T}_{total} = c \cdot \prod_{i=1}^{J} \overline{T}_{j}$	Channel radiances are obtained from a weighted sum of monochromatic radiances for a set of predefined nodes,
Predict band transmittance for each absorbing gas from absorption coefficient, ψ , predicted from regression fits	$\overline{R} = \sum_{n=1}^{N} w_n R_n$
$\overline{\psi}_{j,k} = \frac{\log(\overline{T}_{j,k} / \overline{T}_{j,k-1})}{\delta A_{j,k}}$	The monochromatic R_n are obtained from the OSS monochromatic optical depth profiles for the selected node frequencies. Nodes are selected and weights calculated for a channel to satisfy a specified accuracy (e.g. 0.05K).
$= c_{0,k} + \sum_{i=1} c_{i,j,k} X_{j,k}$ Select the regression coefficients, c_{ijk} , for each gas that minimises transmittance errors.	Higher accuracy = more nodes = longer computation times.

Profile training sets OSS training: ECMWF vs. UMBC (only temperature is allowed to vary)

OSS trained with UMBC set

OSS trained with ECMWF set

The ECMWF set is a better choice for training OSS

From Dr. Moncet, AER

Profile training sets OPTRAN training: ECMWF vs. UMBC

OPTRAN trained with the UMBC set

The UMBC set is a better choice for training OPTRAN

OPTRAN trained with the ECMWF set

• **Profile sets** (cont'd).

- Training sets for clouds and aerosols?
- Consensus of cloud and aerosol types and their properties?

Instrument characterisation.

- Instrument modeling is usually channel-based rather than detector-based. Detector differences are folded into a mean channel value.
 - Detector array (and thus SRF) differences
 - Channel crosstalk
 - "Not good enough" SRF measurement
- For large channel biases, is a variational method of correcting instrument characterisation possible?

• Air mass predictor selection.

 How to optimise the selection of air mass bias correction predictors? The current set does a good job, but some preliminary work suggests they are not optimal.