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My primary interest is cloud properties and effects, where
the bias errors in our measurements are pretty insignificant
compared to model-observation differences

Pacific Northwest National Laboratory

Batielle U.5. Department of Energy 2



A brief history ....

In the beginning, there were surface measurements
e Continuous measurements of state variables
e Networks => climatology, initialization for forecast models

» Then there were field programs
e Short duration, multiple platforms (aircraft and ground)
e Process studies => elucidate the physics of the atmosphere

» Then there were satellites
e Global, single platform, one (or a few) instrument
e Climatology, spatial snapshots

» But, the satellites needed validation
e More field programs
e Multiple locations, repeated efforts

» And then there were profiling sites
e Continuous measurements of many variables and fluxes

e Process studies, satellite evaluation, cIimatoIogy ‘
Pacific NMorthwest National Laboratory

Batielle U.S. Department of Energy 3
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Types of Ground-based sites

» Standard meteorology — radiosondes

P Special networks: Baseline Surface Radiation
Network (BSRN) or Aerosol Robotic Network
(AERONET)

» Cloud and Aerosol Profiling (CAP) Sites

Pacific Northwest National Laboratory
'BY

Batielle U.S. Department of Ene
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Bias errors In measurements

» Most difficult errors to diagnose
e By definition, if we know about a bias error, we remove it

» How do we find them?

e Instrument to instrument comparison (water vapor)

But, often have only one instrument or we cannot sort
out source of inconsistency

e Instrument to model comparison (diffuse flux, MPACE)
But, which do we trust? (instrument, of course!)

e Consistency among multiple measurements (single-
scatter albedo, aerosol closure experiments)

But, can we reduce solution to bias in only one
Instrument?
Pacific Morthwest National Laboratory
Batielle U.S. Department of Energy 10




Some stories from ARM

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 11



Story #1: Water vapor

» ARM has invested more effort and money in the
study of water vapor measurements than any other
guantity

> Multiple instrumentation

» FIVE Intensive campaigns

» Many science team research projects
» Countless hours of debate

Revercomb et al., 2003, BAMS (and a host of references)

Soden et al., 2005, JGR and references therein

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 12



TasLe 2. Operational water vapor instrumentation at the ARM SGP Central Facility. (Additional infor-
mation about the instruments listed may be found online at www.arm.gov/docs/instruments.html.)

Primary quantity observed

Instrument and typical resolutions References

AERI retrievals Water vapor mixing ratio profiles:

|0 min, 100-m resolution, 24 h day™

Feltz et al. (1998);
Turner et al. (2000)

Cimel sun photometer Total precipitable water vapor: every quarter
(CE-318) air mass for air masses greater than 2, and
every |5 min for airmasses less than 2

Holben et al. (1998);
Schmid et al. (2001)

GPS at Lamont, OK Total precipitable water vapor:

30-min resolution, 24 h day™'

Wolfe and Gutman (2000);
King and Bock (1996);
Rotacher (1992)

In situ probes
(Vaisala HMP35D%)

Water vapor mixing ratio: at surface, 25 m,
and 60 m; |-min resolution

Richardson and Tobin (1998);
Richardson et al. (2000)

MFRSR Total precipitable water vapor:
|-min resolution during daytime

Harrison et al. (1994);
Schmid et al. (2001)

MWR Total precipitable water vapor:

(Radiometrics VWVR-1100)

20-s resolution, 24 h day™'

Liliegren and Lesht (1996);
Liliegren (1999)

Radiosonde

Relative humidity profiles:

Turner et al. (2003);

(Vaisala RS-80H) |0-m resolution, eight launches per day Lesht (1998)

Raman lidar (CARL) Water vapor mixing ratio profiles:

|0 min, 78-m resolution, 24 h day™'

Goldsmith et al. (1998);
Turner and Goldsmith (1999)

RSS Total precipitable water vapor:
I-min resolution during daytime
(installed after the 1996 WVIOP)

Harrison et al. (1999);
Schmid et al. (2001)

Batle *Installed after the 1996 WVIOP, replacing the original Qualimetrics 5120-E and 5134-E sensors.




B:

TasLE 3. Additional instrumentation brought to the ARM SGP central facility for the 1996 and1997

WVIOPs.
Primary quantity observed
Instrument and typical resolutions References
AATS-6 Total precipitable water vapor: |12-s resolution Matsumoto et al. (1987);

during daytime (during 1997 WVIOP only)

Schmid et al. (2001)

Chilled mirrors (Meteor AG)
on kite and tethersonde

Relative humidity profiles:
2-s data during most evenings

Porch et al. (1998);
Turner and Goldsmith (1999)

Chilled mirrors on tower
(General Eastern D2/M4)

Dewpoint temperature:
| -min resolution, 24 h day '

Richardson and Tobin (1998);

Richardson et al. (2000)

GPS receiver at SGP Central
Facility

Total precipitable water vapor:
30-min data, 24 h day”'

Wolfe and Gutman (2000)

MPI-DIAL

Woater vapor density profiles:
30 s, 75-m resolution during multiple 12-h periods
(operations restricted by FAA)®

Woulfmeyer and Bésenberg
(1998);
Linné et al. (2001)

NOAA ETL 20.6/31.65-GHz
microwave radiometer (ETL [)

Atmospheric brightness temperatures and total
precipitable water vapor:© 30-s resolution, 24 h day™'

Hogg et al. (1983);
Han and Westwater (2000)

NOAA ETL 23.87/31.65-GHz
microwave radiometer (ETL 2)

Atmospheric brightness temperatures and total
precipitable water vapor: 30-s resolution,
24 h day' (during 1997 WVIOP only)

Hogg et al. (1983);
Han and Westwater (2000)

Scanning AERI in trailer

Downwelling infrared radiance:
8 min, |-wavenumber resolution, 24 h day™'

Feltz et al. (1998)

SRL

Woater vapor mixing ratio profiles:
| ' min, 75-m resolution primarily at night

Whiteman and Melfi (1999);
Whiteman et al. (2001)

14
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| essons learned

» \We can measure water vapor to better than 2% in the
column and better than 5% in upper troposphere

» Radiosondes have to be corrected to get close to this
accuracy

> \We have schemes to do that for Vaisala sondes and they
seem to work pretty well (we can quantify this)

» This information does not seem to be penetrating the
operational side of the field (case in point: we cannot get
the US Weather Service to switch to Vaisala sondes at
Barrow despite our identification of gross errors in the
current sondes; Reason: climate record!)

Pacific Morthwest National Laboratory

Batielle U.S. Department of Energy 18



Sidebar (courtesy of A. Tomkins)

» Fact: we can measure PWV continuously (every 20
seconds) with a MWR to a column error < 2%

» MWR measurements are accurate over land (and
water)

» Cost of MWR (bulk discount) is ~$100,000
» Cost of SSM/I is ? (but let’s estimate $20,000,000)

» So for the cost of 1 SSM/I, | can deploy 200
operational MWRs at land sites

» If you have $20M, which would you prefer?

Pacific Morthwest National Laboratory

Batielle U.5. Department of Energy 19



Story #2:. Solar diffuse flux

» Started with identification of a discrepancy
between measured and calculated clear-sky
diffuse flux at the SGP

> Resulted in a large number of model investigations

> Spawned one aircraft IOP and two later ground-
pased IOPs

» |[dentified problem with thermal correction in solar
oroad-band radiometers

» Calculated a correction factor that 1Is now standard
across all thermal-pile radiometers

Pacific Morthwest National Laboratory

Batielle U.S. Department of Energy 20
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chalsky et al.: Diffuse Irradiance IOP in 2003
Comparison of 8 BB radiometers
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| essons learned

» Sometimes it ISN'T the model

» Continuous, well-calibrated measurements can
produce new problems

» Well-designhed experiments can identify the errors
and correct them

» \Why do you care? If you are removing the bias in
your model (adding aerosol?) when it is a bias in
the instrument ....

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 23



Story #3. Arctic clouds

An Assessment of ECMWF Model Analyses and
Forecasts over the North Slope of Alaska Using
Observations from the ARM Mixed-Phase
Arctic Cloud Experiment

Shaocheng Xie, Stephen A. Klein, John J. Yio,
Anton C. M. Beljaars, Charles N. Long,
and Minghua Zhang

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 24



» Start with MPACE
domain

» Create domain-average
values
e Variational analysis

e Time and space
averaging

e 3-hourly values
» Compare with ECMWF

analysis (6 hourly
values)

Batielle

Mixed-Phase Arctic Cloud Experiment

MPACE Sounding Network (3)
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Mean Errors and RMS Errors
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| essons learned

» \We can use field data to diagnose model biases

» In this case,

e Best results are obtained over the domain => single
point values may not be representative of the domain

e Model does very well in capturing synoptic variation of
large scale fields

e Model represents cloud occurrence fairly well

e Model clouds have too little liquid water and poor
representation of ice/water vertical distribution

e Results in a severe underestimate of downwelling LW
and corresponding errors in surface radiation budget

Pacific Morthwest National Laboratory

Batielle U.S. Department of Energy 33



Story #4. Operational comparison

» CloudNet project
» Pl: Prof. Anthony lllingworth, U. Reading

» Comparison of data from 3 European sites
(Cabauw, Chilbolton, Palaiseau) with forecast
model output

» Brilliant webpage
» Being extended to Lindenberg and ARM sites

. Pacific Northwest National Laboratory

Batielle U.5. Department of Energy 34



Story #5: Heating Rate Profiles

Acknowledgements to:
Sally McFarlane, Jim Mather, Roger Marchand

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 35
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ARM Data Processing

» Heating Rate Profiles

e Temperature and water vapor profiles from radiosondes,
scaled to microwave radiometer precipitable water and
surface temperature

e Vertical profiles of cloud microphysical properties
calculated from ARM millimeter wave radar data (data
has 10-second temporal and 45 m vertical resolution)

e Sample the cloud properties every 5 minutes and
perform radiative transfer only on the sampled profiles.

e Calculate broadband fluxes and vertical profile of
heating rates.

Pacific Morthwest National Laboratory

Batielle U.5. Department of Energy 37



MMF Schematic

GCM grid column
2.8° ~ 300 km

64 CRM columns x 4 km = 256 km

Batielle

Pacific Northwest National Laboratory
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Simulations

» MMF simulations with CSU model *
e Run with observed SST values
e Startin January 1998 and run into 2001
e Second run for 2000 started from different initial conditions

» CAM simulations
e Run with observed SST values for same period

» For the CAM-only runs, we examine output from the
gridbox containing the ARM site

» For MMF runs, we examine the average over the 64 CRM
columns within the gridbox containing the ARM site

* Model output available to any interested scientists

Pacific Northwest National Laboratory

Batielle U.5. Department of Energy 39
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Cloud Fraction

Cloud Fraction
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(RT model

*SW surface comparisons show
strong correlation, little bias

LW surface comparisons are
biased towards model overestimate
of LW flux under cloudy conditions

LW TOA comparisons show large
scatter under cloudy conditions
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Average Water Vapor Profiles

Water Vapor Mixing Ratio
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OLR Frequency Distribution
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*CAM has no OLR values below 175 W/m?2; larger frequency of
very high OLR

*MMF/ARM frequency distributions similar; MMF has more very
low OLR values

Pacific Northwest National Laboratory
Batielle U.5. Department of Energy 46



Pressure (mb)

Pressure (mb)

Batielle

ARM Average LW Heating Rate
O[T

-4 -3 ;2 -1 0 1 2 3
Heating Rate (K/day)
MMF Avg. LW Heating Rate

D H

200 ———
gool N L
1000 oot N —

4 3 2 -1 0 1 2 3
Heating Rate (K/day)

Pressure (mb)

eating Rates for Various OLR Ranges

CAM Avg. LW Heating Rate

4 3 2 -1 0 1 2 3
Heating Rate (K/day)

—— OLR Range 75- 125 Wm™
—— OLR Range 125- 175 Wm’
OLR Range 175- 225 Wm’
OLR Range 225- 275 Wm’
—— OLR Range 275- 325 Wmr

[T L L I A

"l-JY.YE:.'Dieparimem of Energ;f 47



| essons learned

» We can use routine CAP data to carry out statistical
comparisons to identify model biases

» Results from this study

e MMF reproduces observed water vapor profile and clear sky heating
rates better than CAM

e Both models have problems with clouds, but CAM are more severe

e Heating rates errors can be directly tied to deficiencies in cloud
properties

e Classification is a very helpful diagnostic
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Summary

» Extensive networks (limited instrumentation)

e Continuous well-calibrated observations of a few
Important variables

e Provide constraint on model bias

B CAP sites (heavily instrumented, few in number)

e Continuous, well-calibrated observations of many
variables

e Testing ground for fundamental physics and chemistry
e Development framework for process models

e Evaluation facility for satellite measurements

e Evaluation facility for model performance

Pacific Morthwest National Laboratory
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Summary

» Best way (currently) to evaluate model bias

e Continuous comparison with CAP site data => multiple
measurements of variables where possible

e |dentify discrepancies

e Target field campaigns at one or more sites to study
processes and assign cause to discrepancy

e Correct
e Continue

Pacific Northwest National Laboratory
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Issues

» Are we making the “right” measurements?

> Are there simple data streams that we could
generate that would be useful?

» Do we know the absolute accuracy of the
measurements?

» How good is the data quality assessment?

» How much measurement detail do we have to
communicate to the user (NWP) community In
order to make the measurements useful?
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Thanks for your attention!




