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My primary interest is cloud properties and effects, where 
the bias errors in our measurements are pretty insignificant 
compared to model-observation differences
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A brief history ….A brief history A brief history ……..
In the beginning, there were surface measurements

Continuous measurements of state variables 
Networks => climatology, initialization for forecast models

Then there were field programs
Short duration, multiple platforms (aircraft and ground)
Process studies => elucidate the physics of the atmosphere

Then there were satellites
Global, single platform, one (or a few) instrument
Climatology, spatial snapshots

But, the satellites needed validation
More field programs
Multiple locations, repeated efforts

And then there were profiling sites
Continuous measurements of many variables and fluxes
Process studies, satellite evaluation, climatology
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Types of Ground-based sitesTypes of GroundTypes of Ground--based sitesbased sites

Standard meteorology – radiosondes

Special networks: Baseline Surface Radiation 
Network (BSRN) or Aerosol Robotic Network 
(AERONET)

Cloud and Aerosol Profiling (CAP) Sites 
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Japan?

Manus Island
Nauru
Darwin
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Central Facility

ARM Southern Great Plains ARM Southern Great Plains ARM Southern Great Plains 
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Southern Great Plains Central FacilitySouthern Great Plains Central FacilitySouthern Great Plains Central Facility
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Bias errors in measurementsBias errors in measurementsBias errors in measurements

Most difficult errors to diagnose 
By definition, if we know about a bias error, we remove it

How do we find them?
Instrument to instrument comparison (water vapor)
But, often have only one instrument or we cannot sort 
out source of inconsistency
Instrument to model comparison (diffuse flux, MPACE)
But, which do we trust? (instrument, of course!)
Consistency among multiple measurements (single-
scatter albedo, aerosol closure experiments)
But, can we reduce solution to bias in only one 
instrument?
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Some stories from ARMSome stories from ARMSome stories from ARM
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Story #1: Water vaporStory #1: Water vaporStory #1: Water vapor

ARM has invested more effort and money in the 
study of water vapor measurements than any other 
quantity
Multiple instrumentation
FIVE intensive campaigns
Many science team research projects
Countless hours of debate

Revercomb et al., 2003, BAMS (and a host of references)

Soden et al., 2005, JGR and references therein 
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Microwave Radiometer vs. Vaisala RadiosondeMicrowave Radiometer vs. Microwave Radiometer vs. VaisalaVaisala RadiosondeRadiosonde
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Comparison of Upper Tropospheric Humidity (UTH) from 
GOES 6.7 m channel with radiosondes and Raman lidar
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Lessons learnedLessons learnedLessons learned

We can measure water vapor to better than 2% in the 
column and better than 5% in upper troposphere
Radiosondes have to be corrected to get close to this 
accuracy
We have schemes to do that for Vaisala sondes and they 
seem to work pretty well (we can quantify this)
This information does not seem to be penetrating the 
operational side of the field (case in point: we cannot get 
the US Weather Service to switch to Vaisala sondes at 
Barrow despite our identification of gross errors in the 
current sondes; Reason: climate record!)
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Sidebar (courtesy of A. Tomkins)Sidebar (courtesy of A. Sidebar (courtesy of A. TomkinsTomkins))

Fact: we can measure PWV continuously (every 20 
seconds) with a MWR to a column error < 2%
MWR measurements are accurate over land (and 
water)
Cost of MWR (bulk discount) is ~$100,000
Cost of SSM/I is ? (but let’s estimate $20,000,000)
So for the cost of 1 SSM/I, I can deploy 200 
operational MWRs at land sites
If you have $20M, which would you prefer?
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Story #2: Solar diffuse fluxStory #2: Solar diffuse fluxStory #2: Solar diffuse flux

Started with identification of a discrepancy 
between measured and calculated clear-sky 
diffuse flux at the SGP 
Resulted in a large number of model investigations
Spawned one aircraft IOP and two later ground-
based IOPs
Identified problem with thermal correction in solar 
broad-band radiometers
Calculated a correction factor that is now standard 
across all thermal-pile radiometers 
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Observations Thin lines = model 
with three types of 
aerosol
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Michalsky et al.: Diffuse Irradiance IOP in 2003
Comparison of 8 BB radiometers
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Lessons learnedLessons learnedLessons learned

Sometimes it ISN’T the model
Continuous, well-calibrated measurements can 
produce new problems 
Well-designed experiments can identify the errors 
and correct them
Why do you care? If you are removing the bias in 
your model (adding aerosol?) when it is a bias in 
the instrument ….
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Story #3: Arctic cloudsStory #3: Arctic cloudsStory #3: Arctic clouds

An Assessment of ECMWF Model Analyses and 
Forecasts over the North Slope of Alaska Using 

Observations from the ARM Mixed-Phase 
Arctic Cloud Experiment 

Shaocheng Xie, Stephen A. Klein, John J. Yio, 
Anton C. M. Beljaars, Charles N. Long, 

and Minghua Zhang
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Mixed-Phase Arctic Cloud ExperimentMixedMixed--Phase Arctic Cloud ExperimentPhase Arctic Cloud Experiment

Start with MPACE 
domain
Create domain-average 
values 

Variational analysis
Time and space 
averaging
3-hourly values

Compare with ECMWF 
analysis (6 hourly 
values)
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Ice

Liq.
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Net Energy loss (surface to atm):

Observations -9.6 W/m2

ECMWF -20.9 W/m2
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Lessons learnedLessons learnedLessons learned

We can use field data to diagnose model biases
In this case,

Best results are obtained over the domain => single 
point values may not be representative of the domain
Model does very well in capturing synoptic variation of 
large scale fields
Model represents cloud occurrence fairly well
Model clouds have too little liquid water and poor 
representation of ice/water vertical distribution
Results in a severe underestimate of downwelling LW 
and corresponding errors in surface radiation budget
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Story #4: Operational comparisonStory #4: Operational comparisonStory #4: Operational comparison

CloudNet project
PI: Prof. Anthony Illingworth, U. Reading
Comparison of data from 3 European sites 
(Cabauw, Chilbolton, Palaiseau) with forecast 
model output 
Brilliant webpage
Being extended to Lindenberg and ARM sites
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Story #5: Heating Rate ProfilesStory #5: Heating Rate ProfilesStory #5: Heating Rate Profiles

Acknowledgements to:
Sally McFarlane, Jim Mather, Roger Marchand
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ARM Tropical Western Pacific SitesARM Tropical Western Pacific SitesARM Tropical Western Pacific Sites

Manus Nauru
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ARM Data ProcessingARM Data ProcessingARM Data Processing

Heating Rate Profiles
Temperature and water vapor profiles from radiosondes, 
scaled to microwave radiometer precipitable water and 
surface temperature
Vertical profiles of cloud microphysical properties 
calculated from ARM millimeter wave radar data (data 
has 10-second temporal and 45 m vertical resolution)
Sample the cloud properties every 5 minutes and 
perform radiative transfer only on the sampled profiles.
Calculate broadband fluxes and vertical profile of 
heating rates.
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64 CRM columns  x  4 km  =  256 km

2.8°

2.8° ~ 300 km
GCM grid column

MMF SchematicMMF SchematicMMF Schematic
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SimulationsSimulationsSimulations

MMF simulations with CSU model *
Run with observed SST values
Start in January 1998 and run into 2001
Second run for 2000 started from different initial conditions

CAM simulations
Run with observed SST values for same period

For the CAM-only runs, we examine output from the 
gridbox containing the ARM site
For MMF runs, we examine the average over the 64 CRM 
columns within the gridbox containing the ARM site

* Model output available to any interested scientists
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Condensed Water  
Frequency Distributions - Manus
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Cloud FractionCloud FractionCloud Fraction

•ARM cloud frequency is percent 
of time reflectivity is greater than 
-40 dBZ at given level

•CAM cloud fraction is mean 
gridbox cloud fraction from cloud 
parameterization

•MMF cloud fraction is number of 
cloudy CRM columns within CAM 
gridbox
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Surface and TOA Flux Comparisons 
(RT model and Data)

Surface and TOA Flux Comparisons Surface and TOA Flux Comparisons 
(RT model and Data)(RT model and Data)

•SW surface comparisons show 
strong correlation, little bias

•LW surface comparisons are 
biased towards model overestimate 
of LW flux under cloudy conditions

•LW TOA comparisons show large 
scatter under cloudy conditions



43

Heating Rates: Clear Sky Heating Rates: Clear Sky Heating Rates: Clear Sky 
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Average Water Vapor ProfilesAverage Water Vapor ProfilesAverage Water Vapor Profiles
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Heating Rates
All Sky – Clear Sky 

Heating RatesHeating Rates
All Sky All Sky –– Clear Sky Clear Sky 
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•CAM has no OLR values below 175 W/m2; larger frequency of 
very high OLR 

•MMF/ARM frequency distributions similar; MMF has more very 
low OLR values
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Heating Rates for Various OLR RangesHeating Rates for Various OLR RangesHeating Rates for Various OLR Ranges
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Lessons learnedLessons learnedLessons learned

We can use routine CAP data to carry out statistical 
comparisons to identify model biases
Results from this study

MMF reproduces observed water vapor profile and clear sky heating 
rates better than CAM
Both models have problems with clouds, but CAM are more severe
Heating rates errors can be directly tied to deficiencies in cloud 
properties
Classification is a very helpful diagnostic
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SummarySummarySummary

Extensive networks (limited instrumentation)
Continuous well-calibrated observations of a few 
important variables
Provide constraint on model bias

CAP sites (heavily instrumented, few in number)
Continuous, well-calibrated observations of many 
variables
Testing ground for fundamental physics and chemistry
Development framework for process models
Evaluation facility for satellite measurements
Evaluation facility for model performance
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SummarySummarySummary

Best way (currently) to evaluate model bias
Continuous comparison with CAP site data => multiple 
measurements of variables where possible
Identify discrepancies
Target field campaigns at one or more sites to study 
processes and assign cause to discrepancy
Correct
Continue
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IssuesIssuesIssues

Are we making the “right” measurements?
Are there simple data streams that we could 
generate that would be useful?
Do we know the absolute accuracy of the 
measurements?
How good is the data quality assessment?
How much measurement detail do we have to 
communicate to the user (NWP) community in 
order to make the measurements useful?
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Thanks for your attention!


