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Definitions

« “Calibration”

— Synonymous with reliability; summarizes the
conditional probability of observed | forecast.

— More broadly, think of as post-processing to
correct bias, spread deficiencies, sampling error,
or to generate PDFs for non-state variables (e.g.,
stream flow, wave height, heating-degree days).

— Desired result: maximal sharpness given perfect
reliability. Happy customers.
e “Combination”

— Synthesizing probabilities when provided with
forecasts from multiple, independent forecast
systems. Presumably similar desired result.



Disadvantages to calibration?

Cal i bration research doesn't correct the underlying
oroblem Prefer to achieve unbiased, reliable
forecasts by doing nunerical nodeling correctly in
the first place.

— Forecasts may be i nproved, but to end products
not raw forecasts, so little gain in
nmet eor ol ogi cal 1 nsight.

Corrections may be nodel -specific; the
calibrations for GFS v 2.0 may not be useful for
ECMAF, nuch less GFS v 3. 0.

Coul d constrain nodel devel opnent. Calibration

| deal | y based on | ong dat abase of prior forecasts
(reforecasts, or hindcasts) fromsane nodel. Do
we del ay nodel upgrades until new set of

ref orecasts conpl et ed?

Conplicated calibration nmethods may be difficult
to nai ntain.

Not that nuch 1s oal ned throuah cali bration (at



Advantages to calibration?

(My assunption: calibration based on a | arge dat abase of
reforecasts fromthe sane nodel .)

« Large gains in forecast skill nay be possible, equivalent to
5-10 years of NWP devel opnent. [More |ater]

e Reforecast database required for calibration useful in nodel
devel opnent. Can hel p detect subtle biases present only in
| arge sanples, e.g., biases in extrene weat her forecasts.
NP

devel opers are not used to utilizing reforecasts, so they
don’t know what they’ re m ssing.

« Calibration and nodel devel opnent can co-exist I f NAP
centers adopt dual track procedure, wth reforecasts done
every few years with | ower-resol ution version of nodel

 Wth dual-track, costs of reforecasts nanageabl e

— Reforecast conputation can be distributed to ot her non-
producti on conputers.

— Qur work suggests that nost of ensenble information
contained in the nean; therefore, |arge-nenber reforecast
ensenbl es surprisingly unnecessary.

« Mi ntenance issues not so bad if sanme nodel used unchanged,
year after year.



A very brief review of calibration:
(1) Model Output Statistics (“MOS”)

KBID GFS MOS GUI DANCE 2/ 16/ 2005 1800 UTC

DT /FEB 17 /| FEB 18 /FEB 19
HR 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 12 18
N X 32 40 25 35 19

TWMP 42 39 36 33 32 36 38 37 35 33 30 28 27 30 32 31 28 25 23 19 27
DPT 34 29 26 22 19 18 17 17 17 17 17 15 14 13 11 8 7 6 5 2 4
CLD Ov FWCL CL SC BK BK BK BK BK BK BK SC BK BK BK BK FWCL CL CL
WR 26 30 32 32 32 31 29 28 30 32 31 31 31 31 30 29 31 32 33 33 27
WsP 12 12 12 11 08 08 09 08 09 09 10 10 10 12 13 13 15 16 15 09 08

PO6 17 0 0 0 4 0 10 6 8 0 O
P12 17 0 10 17 8

Q6 0 0 0 0 0 0 0 0 0O 0 O
Q2 0 0 0 0 0

TO6 o0 2 o0 0 1/ 0 21/ 2 0 1 0 1 1/ 0 0/ 1 0 0 0O/ O
T12 1/ 0 1/ 2 1/ 1 o0 1 0/ 0
poz 0 0 0O 0 O O OOO OO O O O O O0OO0OO0OO0OO0 O
PGS 13 47 70 84 91100 96100100100100 92100 98100100100 94 92100100
Ty R S S S S S S S S S S S S S S S S S S S S
SNW 0 0

ac 7 8 8 8 8 8 8 8 8 v v 7v 8 7 7 7T 8 8 8 8 8
vis 7 v v 7¢v 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
BY N N NN NNINNDNNNDNNDNNNNNNNNNNN

US: Statistical corrections to operational US NWS models, some fixed (NGM),
some not (Eta, GFS). Refs: http://www.nws.noaa.gov/mdl/synop/index.htm,
Carter et al., WAF, 4, p 401, Glahn and Lowry, JAM, 11, p 1580. Canadian
models discussed in Wilson and Vallee, WAF, 17, p. 206, and WAF, 18, p 288.
Britain: Met Office uses “updateable MOS” much like perfect prog.




Fraction

Ensemble calibration:
rank histogram technigques

NCEP MRF precipitation forecasts,

from Eckel and Walters, 1998
-4 -2 0 2 4 6 8

(a3 (S _ PQPFMethod
E————Damcratic\fothg
P(T <-4) P(3<T<5)
=0.30 =0.19
2 1
P(5 S T) 1.5 25 35 45 55 ;io;fu:jr;sm:::) 1L5 125 135 145 155
= 0.29 FiG. 10. Ranked probability skill score (RPSS) results for all fore-
cast lead times.
- Rank Histogram /‘ _ Advantages: Demonstrated skill gain
os0f \ / E Disadvantages:
(1) Odd pdfs, especially when two ensemble
0.25 members close in value.
0.20 (2) Sensitive to shape of rank histogram,
0.15 and shape of histogram may vary with
o1 a_spe_cts like precip amount --> sample
Size issues.
0.05 (3) Fitted parametric distributions as skillful
o 1 2 3 4 5 References: Hamill and Colucci (MWR, 1997, 1998;

Rank Eckel and Walters, WAF, 1998; used at UKMO)



Fitting parametric distributions

SMOOTHING OF FORECAST ENSEMBLES 2827
8- . Wilks (QIRMS, 128, p 2821)
. explored fitting parametric
" N distributions, or mixtures
; S thereof, to ECMWF forecasts
R |l Fow in perfect-model context.
§ o Power-transformed non -
~ , Gaussian variables prior to
fitting. Didn’t address
ensemble model errors in
this study.

10 m windspeed, m/s

Figure 2. Example ensemble distribution with fitted Gaussian mixture, jointly for the temperature and wind-

speed forecast at 12 UTC 10 January 1997 at Manchester, made at the 180 h lead time. Dots indicate individual

forecasts made by the 51 ensemble members, with the ensemble mean located at ‘E’. The two bivariate Gaussian

densities fj (x) and f>(x) are centred at ‘1’ and ‘2, respectively, and the smooth lines indicate level curves of their

mixture fmix(x), formed with @ = 0.57 (see text). Contour interval is 0.05, and the thick and thin dashed lines are
for 0.01 and 0.001, respectively. Subsequent verifying analysis is ‘A’.



Dressing methods

Original Ensemble Cov(ens mean errors)

(.~

Dressed Ensemble

Method of correcting
spread problems.
Assume prior bias
correction.

Adv: Demonstrated
improvement in
ETKF ensemble
forecasts in

NCAR model.

Dis: Only works
if too little spread,
not too much.

Ref: Roulston and Smith (Tellus, 55A, p 16); Wang and Bishop (QJRMS, submitted; picture above)



Bayesian Model Averaging (BMA)
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Figure 3: BMA predictive PDF (thick curve) and its five components (thin curves) for the
48-hour surface temperature forecast at Packwood, Wash., initialized at 0000 UTC on June
12, 2000. Also shown are the ensemble member forecasts and range (solid horizontal line
and bullets), the BMA 90% prediction interval (dotted lines), and the verifying observation
(solid vertical line).

Weighted sum of kernels
centered around individual,
bias-corrected forecasts.

Advantages: Theoretically
appealing.

Disadvantages: [My personal
opinion]: For Raftery’s
application (post-processing

U. Washington MM5 ensemble),
method over-fit training data.
Shown here, with small sample,
BMA radically de-weighted some
members due to co-linearity.
Expect this wouldn’t happen
when trained with larger sample.

Ref: Raftery et al.,
MWR, in press. Also
recent work by Wilson
at Canadian MSC.



A tool for exploring calibration: the
CDC MRF reforecast data set

Definition of “reforecast” : a data set of retrospective
numerical forecasts using the same model to generate real-
time forecasts.

Model: T62L28 NCEP MRF (now “GFS”), circa 1998
(http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst for details).

Initial states: NCEP-NCAR reanalysis plus 7 +/- bred modes
(Toth and Kalnay 1993).

Duration: 15-day runs every day at 00Z from 19781101 to
now. (http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst/week?2).

Data: Selected fields (winds, geo ht, temp on 5 press levels,
and precip, t2m, ul0m, v10m, pwat, prmsl, rnh700, conv.
heating). NCEP/NCAR reanalysis verifying fields included
(Web form to download at http://www.cdc.noaa.gov/reforecast).

Experimental PQPF: http://www.cdc.noaa.gov/reforecast/narr/




Issues arising in calibration.
(1) Are large reforecast data sets
really necessary?

850 hPa Day 4 Temperature Bias (°C) 95.0W 40.0N Red curve shows

4|~ ——— 23-year Average Bias - bias averaged over

Yearly Estimates of Bias

| 1 23 years of data

| (bias = mean F-O
7 inrunning 61-day
window)

Green curves show
23 individual

yearly running-mean
bias estimates

Note large inter-annual
variability of bias.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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When are long
reforecast data
sets necessary,
and when are
they not?

Example: bias
correction.

Here, large training
data set required,;
bias is small relative
to its yearly variability.

Here, small training
data set adequate;
bias comparable or
greater than its
yearly variability.



Step 2: find dates Step 3: extract

Sam ple SlZe of old analogs observed weather

- Forecast analog 1,
IN )| > 2/12/95 "] g[ T Observed Wx, 2/12/95
- 5 2 = T | 5
5 ' = Gy
fore 2 19
Qe o gl

technique

Forecast analog 2,
1/16/98 * *

TODAY'S ENS MEAN

PRECIP FORECAST * * .
o o=
K\'l; h gy
5 <5 P
< S =
3 = 3
Step 1.
make today’s ot Analog 3, Observed Wx, 3/1/83
forecast

Ref: www.cdc.noaa.gov/people/
tom.hamill/reforecast_bams.pdf

For another example of how most of
information contained in ens. mean, see
Jewson, http://arxiv.org/abs/physics/0310059

%c{mf/: /:Elhasf‘l'_




Analog example:
Day 4-6 heavy precipitation in California,
0000 UTC 29 December 1996 -
0000 UTC 1 January 1997

(A) T62 Prob P > 100mm (B) Analog Prob P > 100mm (C) NARR Analysis
00

“Q;
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Downscaling through analogs
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Again, few close
reforecast
analogs. But
observed data
recognizes
overforecast bias.

(¢) Olympic Ronge Washmg’ron
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Reforecast Analog Amount (mm)

f

Here there are
close reforecast
analogs. Observed
data introduces
spread, increases
amount.



(a) BSS of 2.5 mm forecasts
y
Y

Training sample
Size, analogs

Brier Skill Score

This shows skill of precipitation

forecasts using a two-step analog T 2 3 4 5 & 7
technique, JFM 1979-2003 data Fprenast Lead (Haye)
over conterminous US (CONUS). o 5o ) BSS of 25 mm forecasts
Observations at ~30 km grid 24 yr
spacing (North American Regional N PP
Reanalysis). £ oz0p

. . . g 0.15
Notice increased sample size e -
important for calibrating rarer, high- 5 0.10
precipitation events. 0.05

0.00

1 2 3 4 5 6 7
Forecast Lead (Days)



Sampling issues In other calibration methods:
Example “Zhu” NCEP technique

Zhu CDF correc’rlon <CONUS> 1—Day chf Julian Day 1 (1) Get CDFs of

[T F i ® CF Tt G 58 T nd LT mn] Fo B Gt BF Ty nd T
1.0F 1] forecast and observed,
- 1 averaged over CONUS
- 1 using, say, last 30
0.9 3 days of data.
5 5 3 |z 1 (2) Use difference
= TE 0 1 in CDFs to correct
2 - 0 1 each ensemble
. o| |+ 4 member’s forecast.
0.7 F ol |4 -
C -+ O ]
- al |9 Earaash : In example shown,
- 51 |5 1 raw 7 mm forecast
0.6 j L; Obsarved 4  corrected to ~5.6 mm
- ol |o 1 forecast.
- 2l = ]
e Hcas s I — P — —  NOTE: bias only, not
0 10 20 30 40

o g spread correction.
Precipitation Amt (mm)

Ref: Zhu and Toth, 2005 AMS Annual Conf.



How much do CONUS-averaged
curves vary year by year ?

Zhu CDF correc’rlon <CONUS> 1-Day cht Juhcm qu 1 Zhu precip corrections for each year,
R I I B B L S R B T B ™13 1—day orecos’r on Julian day 1

1.0_ T = e [ ]
C 25+
0.9F E |
: E 20t
E t |
L 08: If E I
o E I
O | el -l
C C L
C 2 L
0.7 £l s |
3 ~ Forecast - T 10[
0.6 Observed E v |
E ] o |
E | - 8 Sh
8 255 3 A 1 I S P 13 & r

0 10 20 30 40 °

Precipitation Amt (mm) ok

| 1 | | | |

0 3 10 15 20 25
Forecast Precipitation (mm)

*

Each curve shows a year’s
corrected forecast amount
as a function of the raw
forecast amount.

Using reforecast data,
25 different year-to-year
curves are shown above



CDF

What Is lost in agglomerating CDF data
over many locations in Zhu technique?

Location—dependent precip corrections for

Location—dependent, reforecast—based CDF

corrections, 1—day forecast on julian day

1.0F @ cmmmmmmmm—————

0.8 [+
! - = -~ Forecast, Albuquerque, NM
0.6 | - --- Observed, Albuguerque, NM
I — Forecast, Portland OR
_ Observed, Portland OR
0.4 -
0 10 20 30 40

Precipitation Amt (mm)

T

Using the 25 years of reforecasts and
a window of +/- 45 days around date of
interest, separate CDF estimates were
developed for each model grid point.

Here are CDFs for two locations on Jan 1.

1

Corrected Precipitation Amount (mm)
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15 20 25

5 10
Forecast Precipitation (mm)

A

Different grid points may
require dramatically
different corrections.



Skill for various precipitation
calibration techniques

(0) BSS of 2 5 mm 1979 2003 (b) BSS of 25 mm, 1979- 2003
0.60 0.30
I Refcs’r Anolog > ® Refcs’r Anolog
0.50 |-~~~ o——e Zhu Refcst A e e——e Zhu Refcst
G e——e Zhu <CONUS> o———e Zhu <CONUS>
0.20
0.40 _

0.30
0.10

0.20

Brier Skill Score
Brier Skill Score

0.00

0.00

-0.10

-0.10

Forecast Lead (Days) Forecast Lead (Days)

Notes: (1) Here, verification on coarse 2.5 degree grid.
(2) Zhu <CONUS> has benefit at 2.5 mm, correcting drizzle over-forecast.
(3) Location-dependent Zhu technique using reforecasts adds skill, esp. at 25 mm.
(4) Large additional skill by using analog reforecast technique, again largest at
high thresholds.

(5) The type of calibration technique really matters. more



Issues arising in calibration

(2) If ensemble forecasts appeared to be sampled
from non-parametric distribution, (e.g., bimodal)
should calibration preserve this?

850 hPa Temp Forecasts
0.20 ~ — T T T T T T T T T T T T T T T T T

Fraction
o
o
|
|

0.05 -

0.00 L. W T ﬂ N
0 S 10 15 20 25
Temperature (C)

see also Jewson (2004), oai:arXiv.org:physics/0310060



Question: are T850 forecast temperature
PDFs normally distributed?

Test:

— Generate n=15
random samples from
N(0,1)

— Extract n=15 850 hPa

4-day forecast temps
over CONUS.

— For both random and
real data, generate D,
statistic relative to
normal distribution
fitted to the data, as in
“Lilliefors” test.

— Repeat.

1.0
(a)
= 0.8
[5
L 06 -
[=] Dn = 0.068
" 0.4
('
0.2 Gamma distribution,
=376, p=052in.
0.0 — T

I I I
0.0 1.5 a0 4.5 6.0
Precipitation, inches

1.0 o
{b}
¥ 0.8
[ -

'-‘: 06 - o
5 H D = 0131
04 I
g /S T

0.2 - Gaugsian distribulion,

i p=19in, a=112in

| 1 i |
0.0 15 a.0 45 6.0

Precipitatian, inches

Fig. 5.3 The Kolmogorov-Smimov 0, statistie s applied w ihe 1933 - 1982 Ithacs January pre-
cipitation data {dots), firted (0 & ganmome dastn'bulmu {a) and a Gaussian disiributon (b). Solid curves
indicare theorereal cumulative distdbution fenctions, and dots show the cormesponding empirical es-
mates. The maximum difference between the enpirical and theoretical CDF3 occurs for the high-
lighted point, and is substantially greater for the Gaussian distribution.

ref: Wilks (1995)



Fraction

Fraction

Deviations from normality rare
(for T850)

D, for 4— daﬁ 15—Member Ensemble
P

of 850 hPa Temp Forecasts

014 [T T : Only 4.69 % of 4-day forecasts
012} - (e) have D, statistic that would
.10} 1 g justify use of fitting
0.08|- 1 : non-normal distribution.
0.06 |- —> .

i . 9.69 % ] . ‘s . )
0.04 : l.e., it's possible you’ll more
0.02f H . do harm than good by fitting
0.0t .. [ [T ] more complicated non-

0.0 0.1 0.2 0.3 0.4 . . . .

0, parametric distributions

D, for 15-member Synthetic Ensemble ~ N(0,1) (9xamples: my o_Id rank :
014f g ‘ o | histogram techniques, possibly

= b) 2 . .
12t 11 _; Bayesian Model Averaging).
0.10 | 7]
0.08| ; Lesson: test simple calibration
0.08 > E techniques alongside more

[ 5.00 % ]
0.04 - H : complex ones.
0.02 h 7
0.000 .. H HT =

0.0 0.1 0.2 0.3 0.4




Issues: (3) Is calibration less necessary
when EPS Is much improved ?

ECMWEF produced 5-member reforecasts once every 2 weeks for 10 years
in DJF. Apply logistic regression to ECMWF, CDC, and both for week 2 terciles.

temp850 week2 raw ec temp850 week2 crs validation_ec_mrfverif
1 1 1 1 1 | | | 1 1 1 1 1 | | |
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Combination: selected
multi-model references

o Krishnamurti et al. “Superensemble” : 1999,
Science, 285, p. 1548. Multivariate linear
regression of multiple models with short training
data set improves deterministic forecasts.

 Evans et al. 2000, MWR, 128, p. 3104: Joint
UKMO/ECMWEF ensembles outperformed either
iIndividually. More than bias cancellation.

e Richardson, 2000: QJRMS, 127, p. 1847. Most
of benefit in multi-model EFs came from multiple
analyses.



Combination of ensembles:
the lessons of DEMETER

Summer tropical 2-m temp positive anomaly, 1-month lead,
ensembles from ECMWF, CNRM, UKMO, MPI, INGV, LODYC, CERFACS

a b
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?

Ref: Hagedorn et al., Tellus, in press, and i
www.ecmwf.int/research/demeter mUItl mOdel



Context for multi-models

Observed state within span of
<« Mmulti-model ensemble, not within

span of individual ensembles.

BIG BENEFIT to multi-model.

« One model much more accurate
than the other. Might as well rely
on the more accurate one.

<—— Both models biased. Multi-model
not likely to help much.

Which of these applies for difficult problems like extreme QPF?

ref: ibid.



Potential economic value
of DEMETER forecasts

QuickTime™ a
TIFF (LZW) decompressor
are needed to see this picture.



Conclusions

Long reforecast data sets very valuable for calibration.
Large skill improvements, especially for rare events.

— Short training data set — calibration shortcuts —small skill
Improvement

Simple, parametric calibration methods should be tried
alongside more complicated ones.

CDC reforecast data set available for your exploration of
reforecast techniques. Should be part of TIGGE, too.

Hope other facilities will explore reforecasts, make theirs
part of TIGGE.

How to reforecast without operational impact? Perhaps
do them at reduced resolution, only every few years.

Encouraging results from preliminary multi-model SREFs
and multi-model climate forecasts.



ERIER SCORE (for 2.5 mm)

NCEP GFS vs. CDC ensemble

1 Dec 2000 - 28 Feb 2001
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Ranked Probability Skill Score (RPSS)

Other examples of calibration

Example: Decile forecasts of 850 hPa temps over US
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Observed F2+ Tornado Counts in 12—hour Window
Centered on 0000 UTC 27 Apr 1991
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Technique for finding tornado forecast analogs
For a given grid point, match today’s ensemble mean fields
with past forecast fields. Find n closest analog dates.

° g g g s Shear / 25 ms-1

o J o o o (normalized so CAPE doesn’t
o o nesn o o overwhelm shear)
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. . o o o blue dot: point to find analogs for
. . . . . pink dots: points to match up
current forecasts with old ones.
Result: Note: can vary weights horizontally

1) Dates of n analogs
2) Numerical quantification of how .
good the pattern match is for each of n. 2acK



Logistic regression with
ECMWF and CDC reforecasts

Forecasts every 2 weeks, DJF for 10 years (85
cases)

NCEP-NCAR reanalysis for tercile definition.

CDC, ECMWEF separate: run logistic regression on
ensemble mean, cross-validated.

Together:

— Step 1. Weighted combination of ensemble means

— Step 2: Logistic regression.

Details on logistic regression in Hamill et al., MWR,
132, p 1434.
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