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Accounting for an imperfect model in 4D-Var

Abstract

In most operational implementations of 4D-Var, it is assumed that the model used in the data assimilation
process is perfect or, at least, that errors in the model can be neglected when compared to other errors in the
system. In this paper, we study how model error could be accounted for in four dimensional variational data
assimilation.

We present three approaches for the formulation of weak constraint 4D-Var: estimating explicitly a model
error forcing term, estimating a representation of model bias or, estimating a four dimensional model state
as the control variable. The consequences of these approaches with respect to the implementation and the
properties of 4D-Var are discussed.

We show that 4D-Var with an additional model error representation as part of the control variable is essen-
tially an initial value problem and that its characteristics are very similar to that of strong constraint 4D-Var.
Taking the four dimensional state as the control variable however leads to very different properties. In that
case, weak constraint 4D-Var can be interpreted as a coupling between successive strong constraint assimi-
lation cycles. A possible extension towards long window 4D-Var and possibilities for evolutions of the data
assimilation system are presented.

1 Introduction

Data assimilation comprises combining all available sources of information about the atmosphere to produce
the best possible forecast. Sources of information are of two types: observations of the atmosphere and the
physical laws governing its evolution. ECMWF uses a four dimensional variational data assimilation system
as described by Rabier et al. (2000), Mahfouf and Rabier (2000), Klinker et al. (2000) and Andersson et al.
(2004). Within each assimilation window, this system assumes that the numerical model representing the
evolution of the atmospheric flow is perfect, or at least that model errors can be neglected when compared
to other errors in the data assimilation system. The goal of this paper is to study how model error could be
accounted for in a four dimensional variational data assimilation system.

Weak constraint 4D-Var theory was introduced by Sasaki (1970). The main underlying idea is that since the
model’s equations are not exact, it is sufficient to satisfy them only approximately: they can be imposed as a
weak constraint in the optimisation problem. Weak constraint 4D-Var has never been implemented fully with a
realistic forecast model because of the computational cost and because of the lack of information to define the
model error covariance matrix required to solve the problem. However, even with important approximations,
in the representation of model error itself, and of the model error covariance matrix, good results have been
obtained by several authors such as Derber (1989), Wergen (1992), Zupanski (1993) or Bennett et al. (1996)
with atmospheric models and Vidard et al. (2004) with an ocean model.

We present in this paper several approaches for the implementation of weak constraint 4D-Var. It is organised
as follows: in section 2 we recall briefly the theoretical formulation of variational data assimilation and show
that 4D-Var and 3D-Var are approximations of the more general weak constraint 4D-Var. Section 3 explains
how systematic model error, or model bias, can be taken into account and estimated. Section 4 gives the
details of a realistic implementation of weak constraint 4D-Var, explicitly taking model error forcing as part
of the control variable. In section 5 we show how weak constraint 4D-Var can be implemented using the four
dimensional model state as the control variable. In these sections, we highlight the consequences of these
choices with respect to the implementation and the fundamental differences with strong constraint 4D-Var.
Finally, in section 6, we discuss and compare some aspects of the various possible implementations of 4D-Var
accounting for imperfect model described earlier and outline possible future extensions.
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2 Variational data assimilation

2.1 Probabilistic formulation

In a very general sense, the knowledge of a physical system falls into two categories: theoretical knowledge,
usually in the form of equations representing the laws of physics, and experimental knowledge consisting
of observations of the system. Most physical systems are continuous, but for practical purposes, they are
represented by a discrete state variable x defined in model space. Observations of the system are represented
by the vector y in observation space.

In most applications, theoretical knowledge of the system is such that it can be decomposed into, on one hand
equations governing the physical state of the system and, on the other hand, equations relating the state of the
system to observations. These two sets of equations can be written as:

G(x) = 0,

H(x) = y,

where G(x) represents theoretical knowledge of the system and H(x) represents knowledge of what the obser-
vations should be given the true state of the system. In meteorological applications, G can include the equations
governing the evolution of the flow as well as additional constraints such as balance equations or prior knowl-
edge about the state of the system.

Since both sources of information, theoretical and experimental, are incomplete and subject to errors, it is
necessary to resort to a statistical description of the system. A natural way to describe available information in
that context is to define the probability distribution for the parameters of the problem. Taking into account the
uncertainties, the equations take the form:

G(x) = εg,

H(x)−y = εo.

H(x) represents the imperfect knowledge of what the observations should be given the state of the atmosphere,
εo includes observation errors and uncertainties in H and G(x) represents imperfect theoretical knowledge
about the atmosphere, it is affected by errors εg . Depending on available knowledge of the problem, the image
of G and thus the space is which εg is defined may vary.

In order to proceed further, we assume that all errors present in the problem are unbiased (or that the bias
has been removed) and can be represented by zero mean Gaussian distributions. These can be defined by the
covariance matrices associated to each of the errors defined above. Assuming that errors in the observations and
in G are uncorrelated and using Bayes theorem, it can be shown that, combining the two sources of information,
the posterior probability distribution for x given the observations y is:

P (x|y) = αexp

(

−
1

2
[H(x)−y]T R−1[H(x)−y]−

1

2
G(x)T C−1

g G(x)

)

where Cg is the error covariance matrix for uncertainties in G, R is the observation error covariance matrix
accounting for uncertainties in the observations and in the observation operator and α is a normalisation coef-
ficient.

In variational data assimilation the most probable state is sought, corresponding to the maximum of the posterior
distribution. This is done by iteratively minimising − log[P (x|y)], which is typically written as a cost function:

J(x) =
1

2
[H(x)−y]TR−1[H(x)−y]+

1

2
G(x)T C−1

g G(x).
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More details on this result are presented for example by Jazwinski (1970), Lorenc (1986) or Rodgers (2000).
One particular source of information which is available in meteorology is a prior estimate of the state of the
system. This could be, for instance, a climatological mean for the season. In practice, in operational weather
forecasting centres, it is a forecast from the most recent analysis. This represents prior knowledge we have
about the state of the system without resorting to the current observations y. The prior estimate of the mean of
the state variable is represented by xb and called background, with background error covariance matrix B. We
will separate it from the other constraints in G and assume background error is uncorrelated with other errors
in the problem. The cost function becomes:

J(x) =
1

2
(x−xb)

TB−1(x−xb)+
1

2
[H(x)−y]T R−1[H(x)−y]

+
1

2
F(x)T C−1

f F(x) (1)

where F represents the remaining theoretical knowledge after background information has been accounted for
and Cf is the associated error covariance matrix.

The background term of the cost function Jb is important for many reasons. In meteorological data assim-
ilation, observations are not regularly distributed in time or space, some areas are not observed during the
assimilation window. The covariance matrix B will determine how information is extrapolated from observed
areas to unobserved regions and is therefore crucial for the quality of the analysis in areas where few obser-
vations are available. In mathematical terms, the problem would be under-determined in those areas without
the background term. The second term in the definition of J is called the observation term denoted Jo. This
term can be interpreted as a measure of the discrepancy between the observations and their equivalent obtained
from the estimated state of the atmosphere x. The cost function is a weighted measure of these discrepancies,
weighted by the inverse of the error covariance matrices. This gives data (experimental or theoretical) a weight
inversely proportional to the variance of errors affecting them, giving more weight to accurate information and
less weight to inaccurate ones.

This short overview of the theoretical basis for variational data assimilation shows that, up to this point, no
assumption has been made regarding the space over which x is defined, in particular whether it is a three or
four dimensional space. According to the choice of control vector x and of the constraint F , the approach
presented here will lead to several classes of variational assimilation methods.

2.2 Four dimensional problem

As described very early on by Sasaki (1970), a very general approach is to consider x as a four dimensional
representation of the atmosphere. In that case, the components of x are the physical variables describing the
atmosphere (e.g. temperature, wind, humidity and surface pressure) discretised over the three spatial dimen-
sions of the model’s domain and the temporal dimension over the period for which observations are available.
The assimilation window [0,T ] is discretised into n+1 time steps {ti}i=0,...,n. The state vector xi represents
the three dimensional state of the atmosphere at time ti. The observation operator will use the components of
the state variable at the appropriate time to evaluate the observation term of the cost function and will make the
most accurate use of available observations.

It is also important to include the fact that the atmosphere evolves according to the general laws of physics.
The values of x at successive times are not independent: a relation between successive values of x i exists and
is represented by the forecast model. As this model is not perfect, we can write:

xi = Mi(xi−1)+ηi (2)
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where Mi represents the model describing the evolution of the atmospheric flow from time ti−1 to time ti and
ηi is the three dimensional model error in that time step. The constraint F can be defined by:

Fi(x) = xi −Mi(xi−1).

In this formulation, the atmospheric model is only imposed as a weak constraint since the minimising solution
x is not an exact solution of the model. This formulation is known as weak constraint 4D-Var. Cf is the model
error covariance matrix and is usually denoted by Q and the associated term in the cost function by Jq .

2.3 Reduction of the control variable

At the current operational resolution of the ECMWF data assimilation system, implementing 4D-Var as de-
scribed above would require using a control variable with a dimension of the order of 109. The corresponding
model error covariance matrix would have of the order of 1018 elements. This is more than the total number
of observations of the atmosphere taken since routine meteorological observations started in the 1940s. Since
approximately 6× 106 observations are available each day, it would take 250 million years to gather as many
observations as there are parameters in Q. To gather meaningful statistics, it would require orders of magnitude
more data, assuming that one could separate model error from other sources of error. There is not enough
information available to define this problem without important simplifications.

Assuming a simplifying model can be found for the model error covariance matrix, as is already the case for
the background error covariance matrix, the number of parameters defining Q would be reduced and could be
determined.

Approximations are necessary in order to solve the variational data assimilation problem. In most operational
variational data assimilation implementations, model error is assumed to be small enough to be neglected
compared to initial condition error. The atmospheric model is assumed to be exact and is imposed as a strong
constraint:

xi = Mi(xi−1).

The evolution of the atmosphere is then entirely determined by the initial condition x0 and the control variable
reduces to a three dimensional state. This reduction of the control variable, combined with the adjoint technique
to compute the gradient of the cost function required by most minimisation algorithms, was introduced by
Le Dimet and Talagrand (1986) and is usually referred to as strong constraint 4D-Var or simply 4D-Var. The
control variable is defined over a three dimensional space but the time dimension of the information brought
by the observations and the forecast model is taken into account. 4D-Var should perhaps more appropriately be
known as 3 1

2
D-Var. The size of the control variable and the elimination of the model error covariance matrix

make this algorithm achievable operationally with today’s supercomputers.

It is possible to simplify the problem even further and choose the control variable x as a three dimensional
representation of the state of the atmosphere at analysis time. The components of x are the same physical
variables describing the atmosphere discretised over the same spatial domain as in the four dimensional case.
The observation operator computes the observation equivalent for that given state, ignoring the fact that all
observations do not occur at analysis time. In that case, the forecast model is not used in the data assimilation
process. This approach, called three dimensional variational data assimilation, or 3D-Var, is or has been used
by several operational centres.
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4D-Var 4D-Varβ 4D-Varη 4D-Varx
(Section 3) (Section 4) (Section 5)

x0 x0, β x0, η x

xi = Mi(xi−1) xi = Mi,0(x0)+βi xi = Mi(xi−1)+ηi xi ≈Mi(xi−1)
⇓ ⇓ ⇓ ⇓

3D Initial
Condition

3D I.C. +
Model Bias

3D I.C. + Model
Error Forcing

4D Atmospheric
State

Table 1: Summary of control variable and simplifying model assumptions in four dimensional variational data
assimilation. Each formulation is described in detail in the sections indicated in the table.

2.4 Four dimensional control variable

We have shown that the well known 3D-Var and 4D-Var data assimilation algorithms are approximations of
the more general weak constraint 4D-Var problem. In the remainder of this paper, we show how the four
dimensional nature of the control variable can be retained. Equation (2) defines a change of variable which
allows the computation of {xi}i=0,...,n knowing x0 and η = {ηi}i=1,...,n and vice versa. This defines two
possible choices of control variable that remain four dimensional. Model error can also be defined as the
difference between the perfect model trajectory and the state at each time step over the length of the assimilation
period for a given initial condition. It is represented by β = {β i}i=1,...,n, satisfying:

xi = Mi,0(x0)+βi (3)

where Mi,0 represents the forecast model integrated from time t0 to time ti. This equation defines another
change of variable and a third potential control variable for the weak constraint 4D-Var problem. This list of
possible control variables is not exhaustive. For example, non-additive representations of model error could
be used, such as multiplicative factors for model tendencies as often used in ensemble forecasting. We denote
4D-Varη , 4D-Varβ and 4D-Varx the weak constraint 4D-Var formulations with respectively (x0,η), (x0,β)
and x for control variable. Table 1 summarises these possible choices of control variable and the simplifying
assumptions that can be made in variational data assimilation. The meaning and implications of each of these
approaches is examined in the following sections.

3 Model bias control variable

3.1 Control variable definition

It is a growing area of research to try to determine and eliminate biases in data assimilation systems, as sum-
marised by Dee (2005). In particular, estimation of observation biases has become an active area of research
in recent years with methods like variational observation bias correction introduced by Derber and Wu (1998).
Biases are the mathematical expectation of the errors, or ensemble average of the errors. This assumes many
realizations of the system are accessible for a proper estimation. In meteorology, this is not possible and the
bias is usually assumed ergodic: forecast error statistics are accumulated over long periods of time and the time-
averaged error, or systematic error, is used for model bias. This is a good representation of systematic or slowly
varying errors. For example, it should represent well errors in the model that vary on a seasonal timescale, like
misrepresentation of sea-ice (particularly in the spring and autumn) or errors affecting the stratosphere of polar
regions in winter, described by McNally (2003). With this assumption, it is possible to estimate model bias
with a weak constraint 4D-Var formulation.
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In this section, we choose x0 and β, as defined by equation (3), as the control variable. In that case, the
constraint associated with model error is:

Fi(x) = xi −Mi,0(x0).

For the reasons related to the size of the problem already given in section 2.3, it is necessary to make approx-
imations in the representation of β. In the following, it is assumed constant over the assimilation window.
This is a good representation of model bias under the ergodicity assumption. The cost function which defines
4D-Varβ is:

J(x0,β) =
1

2
(x0 −xb)

TB−1(x0 −xb)+
1

2
βTQ−1β (4)

+
1

2

n
∑

i=0

[Hi(Mi,0(x0)+β)−yi]
T R−1

i [Hi(Mi,0(x0)+β)−yi].

where yi represents the observations at time ti, Ri and Hi are the observation error covariance matrix and
observation operator at time ti and observation error is assumed uncorrelated in time.

3.2 Incremental formulation

At ECMWF and in other operational implementations, the incremental formulation of 4D-Var, introduced by
Courtier et al. (1994), is used in strong constraint 4D-Var. In this approach, the nonlinear problem is treated as
a succession of quadratic problems, approximating the nonlinear problem around a guess xg . This is achieved
by using the initial condition increment δx0 = x0 −x

g
0 as the control variable for the minimisation problem

and by linearising the model and observation operator around the guess. This allows the use of very efficient
minimisation algorithms such as the preconditioned conjugate gradient method developed by Fisher (1998).
The incremental strong constraint 4D-Var cost function is:

J(δx0) =
1

2
(δx0 +b)TB−1(δx0 +b)

+
1

2

n
∑

i=0

(HiMi,0δx0 +di)
TR−1

i (HiMi,0δx0 +di)

where Mi,0 represents the tangent linear model integrated from time t0 to time ti, i.e. Mi,0 = MiMi−1 . . .M1

and M0,0 = I, Mi and Hi are the tangent linear model and observation operator at time ti, di = Hi(x
g
i )−yi

and b = x
g
0 −xb. The gradient of this cost function with respect to the initial condition increment is:

∇J0 = B−1(δx0 +b)+
n

∑

i=0

MT
i,0H

T
i R−1

i (HiMi,0δx0 +di). (5)

In practice, the rightmost terms in the equation (5), ỹi = HiMi,0δx0 +di, are computed sequentially in one
forward integration of the tangent linear model and stored. The adjoint variable is defined recursively by:

δx∗

i = MT
i+1δx

∗

i+1 +HT
i R−1

i ỹi with δx∗

n = HT
nR−1

n ỹn.

Using the linearity of the adjoint model, one shows that δx∗

0 is equal to the sum in equation (5). The approximate
cost function and its gradient are obtained by one integration of the tangent linear model and one backward
integration of the adjoint model.
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Figure 1: Weak constraint 4D-Var with model bias control variable. The bias β is added to the model state
(thick dashed line) to provide a bias corrected state (thick solid line) which is then compared to observations.
In the schematic example presented here, the bias is constant over the assimilation window.

The incremental 4D-Var formulation can easily be extended to the model bias control variable. The gradient of
the quadratic approximation to the cost function with respect to the initial condition increment and to the bias
increment become respectively:

∇J0 = B−1(δx0 +b)+
n

∑

i=0

MT
i,0H

T
i R−1

i [Hi(Mi,0δx0 + δβ)+di]

∇Jβ = Q−1(δβ +βg)+
n

∑

i=0

HT
i R−1

i [Hi(Mi,0δx0 + δβ)+di]

where βg is the guess for the bias, δβ the bias increment and where the nonlinear departures from observations
di are computed taking the guess for the bias into account. The gradient with respect to the initial condition is
identical to the gradient in strong constraint 4D-Var given by equation (5), except for the fact that, in the forward
integration, δβ is added to the evolved increment before entering the observation operator. The adjoint model
does not appear in the gradient with respect to the bias: the output of the adjoint of the observation operators
is added directly to the gradient of the cost function with respect to δβ. The tangent linear and adjoint models
and observation operators are unchanged. Because the contributions to the gradient with respect to the bias
are intermediate results of the contributions to the gradient with respect to the initial condition, the cost of
computing the cost function and its gradient are similar to strong constraint 4D-Var.

Figure 1 gives an overview of the implementation of this formulation of the weak constraint 4D-Var problem.
The background is obtained from a forecast from an earlier analysis (thin dashed line). The minimisation
algorithm gives new estimates of the initial condition and of the model bias. The model is integrated from
the new initial condition over the whole assimilation window (thick dashed line) before this forecast is bias
corrected (thick solid line) and compared with observations. The ensuing forecast will be issued from the
initial condition produced by the algorithm and bias corrected at post-processing stage if required.

Overall, the characteristics of this optimisation problem are very similar to that of strong constraint 4D-Var.
Information is propagated between the initial condition and observations by the tangent linear and adjoint
models. Model bias is represented by additional parameters in the optimisation problem without entering
directly the model equations. In that respect, it is similar to the case where, for example, observation bias
correction parameters are estimated.
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4 Model error forcing control variable

4.1 Control variable definition

Equation (2) defines a change of variable which allows the computation of x given x0 and η and vice versa. In
this section, we choose to use the initial condition x0 and model error forcing η as the control variable. This
formulation of weak constraint 4D-Var is denoted 4D-Varη . There have been several attempts to take model
error into account in variational data assimilation and this is the choice most authors have made. As shown
in section 2.3, a realistic compromise in the representation of model error is necessary to implement weak
constraint 4D-Var.

Derber (1989) introduced the variational continuous assimilation where the control variable is systematic model
error forcing rather than the initial condition. In this case, the model error control variable is the same size as
the state variable and the size of the problem is unchanged. Zupanski (1993) defined model error as η i = λiΦ

where Φ is a three dimensional field and the λi are predefined coefficients defining the evolution in time
of model error. Zupanski (1997) defined model error as a first order Markov variable in which the random
component could be defined on a coarser resolution in time or space. Griffith and Nichols (1998) propose using
a spectral representation of model error of the form:

ηi = γ0 +γ1 sin(i∆t/τ)+γ2 cos(i∆t/τ)

where γ0, γ1 and γ2 are three dimensional fields, ∆t is the model time step and τ is a constant depending on
the timescale on which the model error is expected to vary, for example 24h. Errors with longer timescale are
represented by the constant term over the assimilation period.

Another relatively simple approach, chosen in the remainder of this section, is to consider model error to be
constant by intervals. The length of the interval can vary, from being as long as the assimilation window, which
means that model error is constant for the whole assimilation window, to intervals as short as a model time step,
which is the full four dimensional problem.

The weak constraint 4D-Var cost function is defined in the most general form by equation (1). It can be written
more explicitly as a function of the components of the 4D-Varη control variable:

J(x0,η) =
1

2
(x0 −xb)

TB−1(x0−xb)+
1

2

n
∑

i=1

ηT
i Q−1

i ηi

+
1

2

n
∑

i=0

[Hi(xi)−yi]
TR−1

i [Hi(xi)−yi] (6)

where observation errors and model errors are assumed uncorrelated in time and xi = Mi(xi−1)+ηi is the
forced model solution.

4.2 Incremental formulation

The incremental 4D-Var formulation can be extended to the model error forcing part of the control variable η.
The control variable for the incremental 4D-Varη is the departure (δx0, δη) from a first guess (xg

0,η
g). For

small perturbations δxi−1 of x
g
i−1

and δηi of η
g
i , the model can be linearised and the perturbation evolves

according to:

δxi = Miδxi−1 + δηi = Mi,0δx0 +
i

∑

j=1

Mi,jδηj (7)
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Figure 2: Weak constraint 4D-Var with model error forcing control variable. In the schematic example pre-
sented here, the forcing is constant for each of three intervals in the assimilation window (denoted η1, η2 and
η3). It is applied at every time step, for illustrative purposes four times in each interval.

where Mi,j represents the tangent linear model integrated from time tj to time ti, i.e. Mi,j =MiMi−1 . . .Mj+1

and Mi,i = I. The gradients of the quadratic approximation of the cost function with respect to the initial con-
dition increment and to the forcing increment at time ti are respectively:

∇J0 = B−1(δx0 +b)+
n

∑

j=0

MT
j,0H

T
j R−1

j (Hjδxj +dj)

∇Ji = Q−1

i (δηi +η
g
i )+

n
∑

j=i

MT
j,iH

T
j R−1

j (Hjδxj +dj)

where the nonlinear departures from observations dj are evaluated from the guess using the forced nonlinear
model. The gradient with respect to the initial condition is the same as in strong constraint 4D-Var except for
the fact that the forward integration is carried out with the forced linear model defined by equation (7). The
observation term gradient with respect to the forcing increment at time ti has the same form as the gradient with
respect to the initial condition increment, with the difference that the contributions to the sum are restricted
to the steps j ≥ i. The gradient with respect to the forcing increment at time ti results from the backward
integration of the adjoint from the end of the window to time ti. The total gradient of the cost function is still
obtained by one forward integration of the tangent linear model and one backward integration of the adjoint, as
was the case in strong constraint 4D-Var. This requires only limited modifications to an adjoint model designed
for use in a strong constraint 4D-Var system, as already pointed out by Derber (1989).

Figure 2 gives an overview of the incremental implementation of this formulation of the weak constraint 4D-Var
problem. The background is obtained from a forecast from an earlier analysis (dashed line). The minimisation
gives a new estimate of the initial condition and of the model error forcing. The solution (thick solid line) seems
discontinuous when the forcing is applied. The forcing is applied at every time step and should be interpreted
as a source term in the equations to correct for errors in each time step. The solution is not more discontinuous
in principle than any discrete solution of the model’s equations. In practice, the solution may present small
amplitude discontinuities if the forcing is not applied at every time step but they should remain small enough
not to create spin-up problems. Furthermore, balance constraints could be incorporated in the model error
covariance matrix as is already done for the background error covariance matrix.

As with the model bias term, there is a direct propagation of information between the initial condition part
of the control variable and all observations through the tangent linear and adjoint models. It is similar in that
respect to strong constraint 4D-Var. Like the model bias, the model error forcing is estimated in addition to the
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initial condition. The main difference from the model bias formulation is that the forcing directly modifies the
model state in the forward integration and, as a consequence, the adjoint model is present in the expression of
the gradient with respect to the components of the model error forcing.

5 Model state control variable

5.1 Control variable definition

In this section, the four dimensional model state x is chosen as the control variable. We denote this formulation
of weak constraint 4D-Var by 4D-Varx. This definition is closer to the original formulation of the weak con-
straint 4D-Var problem as described in section 2 but has not been studied as much as the model error forcing
formulation and has never been tested in an operational environment. The cost function can be written as a
function of the components of the 4D-Varx control variable:

J(x) =
1

2
(x0 −xb)

T B−1(x0−xb)+
1

2

n
∑

i=0

[Hi(xi)−yi]
T R−1

i [Hi(xi)−yi]

+
1

2

n
∑

i=1

[xi −Mi(xi−1)]
T Q−1

i [xi −Mi(xi−1)] (8)

where observation errors and model errors are assumed uncorrelated in time. In this formulation, the model
does not appear in the observation term of the cost function but only in the model error constraint term.

As already mentioned, solving the four dimensional problem is not possible without some approximations.
We choose to define the control variable as the model state at the start of several intervals in the assimilation
window. Within each interval, or sub-window, the forecast model is used to define the state. This is a partial
reduction of the control variable where the model is used as a strong constraint between the times when the
components of the control variable are defined. We assume that the control variable is defined at m regularly
spaced times in addition to the initial time. To fix the notations, the assimilation window is split into regular
intervals of p time steps each, starting at steps {ki = i×p}i=0,...,m. The cost function becomes:

J(x) =
1

2
(x0−xb)

TB−1(x0 −xb) (9)

+
1

2

m
∑

i=0

p−1
∑

j=0

[Hki+j(M
j
ki

(xki
))−yki+j ]

TR−1

ki+j[Hki+j(M
j
ki

(xki
))−yki+j]

+
1

2

m
∑

i=1

[xki
−Mp

ki−1
(xki−1

)]T Q−1

ki
[xki

−Mp
ki−1

(xki−1
)]

where Mj
i = Mi+j−1 ◦ · · · ◦Mi represents the model integrated for j steps from time ti, where ◦ denotes the

composition of functions and M0
i is the identity.

The expression of the cost function is slightly more complicated than with other choices of control variable
but can still be computed without difficulties. With one sub-window (m = 0, p = n+1), the control variable
reduces to the initial condition and this expression is the strong constraint 4D-Var cost function. When the
control variable is defined at every step (m = n, p = 1), this expression is the full weak constraint cost function
as defined by equation (8). The choice of the interval length provides some control over the balance between
the size of the control variable and the accuracy of the solution. With this approximation, the model is present
in the observation term of the cost function, as in strong constraint 4D-Var.
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(a) First minimisation
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(b) Other minimisations
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Figure 3: Incremental implementation of weak constraint 4D-Var with model state control variable. The control
variable is defined with respect to the trajectory and independent from the state at the end of the previous sub-
window.

5.2 Incremental formulation

In the incremental formulation, the control variable is the correction δx to a guess xg . The gradient of the
quadratic approximation of the cost function with respect to the component of the control variable at step k i is:

∇Ji =
p−1
∑

j=0

(Mj
ki

)THT
ki+jR

−1

ki+j(Hki+jM
j
ki

δxki
+dki+j)

+ Q−1

ki
(δxki

−M
p
ki−1

δxki−1
+q

p
ki

)

− (Mp
ki

)T Q−1

ki+1
(δxki+1

−M
p
ki

δxki
+q

p
ki+1

)

where q
p
ki

= x
g
ki
−Mp

ki−1
(xg

ki−1
) and M

j
i represents the tangent linear model integrated for j steps from time

ti. This expression is valid for 1 ≤ i ≤ m−1. For i = 0, the second term should be replaced by the gradient of
the background term and, for i = m, the last term is not present.

In the incremental formulation, the control variable for a given minimisation is the departure from the current
guess. In the first minimisation, it is usually the departure from the background forecast as shown in figure
3(a). In the following minimisations, it is the departure from the trajectory resulting from the output of the
previous minimisation which is now discontinuous as shown by dashed lines in figure 3(b). It is also the
trajectory around which the tangent linear and adjoint models are linearised. This is very different from the
case when a forcing term is chosen as the control variable as shown in figure 2. In 4D-Varη , a forcing term
is added to the current evolved increment, whereas in 4D-Varx, an increment replaces the evolved state and
the evolution from that time onwards does not depend on the increment in the previous interval. The forward
integrations on the various sub-windows can run independently. The expression of the gradient shows that the
adjoint model can be integrated backwards independently on each sub-window. Knowing the trajectory and
current estimate of the increment at steps ki and ki+1 allows the computation of the components of Jq and
their gradients in parallel. The consequence is that the scalar products and update of the current control vector
in the minimisation algorithm are the only point where communication between the various sub-problems is
required. This weak constraint formulation brings another possible dimension for parallelising 4D-Var. The
tangent linear and adjoint models used in strong constraint 4D-Var can be used without modification.

In the 4D-Varx setup, weak constraint 4D-Var can be interpreted as solving several strong constraint 4D-Var
cycles coupled in one single optimisation problem. Because the tangent linear and adjoint models start from
independent states, the tangent linear approximation only needs to be valid within each sub-window which
is less restrictive than with strong constraint 4D-Var, or weak constraint 4D-Var with a model error control
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variable, where it has to be valid over the whole assimilation window. This additional parallelism and relaxed
linearity assumption should allow for the use of longer assimilation windows and higher resolution models that
include more nonlinear phenomena.

5.3 Hessian properties

The Hessian of the cost function determines some of the properties of the optimisation problem arising from
4D-Var. An approximation of the Hessian of the incremental strong constraint 4D-Var cost function is:

J” = B−1 +HTR−1H

where, for this paragraph, H is the global linearised observation operator and includes the tangent linear model.
The change of variable χ = B−1/2δx is applied, where B−1/2 is an inverse square root of B as explained by
Fisher (2003). The Hessian of the preconditioned minimisation problem becomes:

Ĵ” = I+BT/2HTR−1HB1/2. (10)

The second term is positive semi-definite, its eigenvalues are non-negative which implies that the eigenvalues
of Ĵ” are all greater than or equal to one. As already stressed in section 2, in meteorology the number of
observations is much smaller than the dimension of the state vector, the rank of R−1 and of the second term of
the expression above is smaller than the dimension of the identity matrix in the first term. Even if there were
more observations, poorly observed areas would likely remain: some components of the control variable are
not observed and the rank of the second term remains smaller than the rank of the first term. This illustrates
the requirement for the background term as explained in section 2.1, and implies that there are many unit
eigenvalues in the spectrum and that the condition number is equal to the largest eigenvalue.

An approximation of the local leading eigenvalue of the strong constraint 4D-Var optimisation problem is given
by Andersson et al. (2000) as:

λmax ≈ 1+2nobs(σb/σo)
2

where nobs is representative of the number of uncorrelated observations at each grid point and σb and σo are
the background and observation error standard deviations as implied by B and R. The maximum eigenvalue is
obtained for the direction where nobs(σb/σo)

2 is maximum, i.e. the direction where the most numerous (large
nobs) and accurate (small σo) observations and large background error (large σb) coincide. Currently in the
ECMWF data assimilation system, the maximum is reached for the lowest model level over Europe because of
the very dense and accurate observation network in that part of the world, as shown for example by Trémolet
(2005).

In weak constraint 4D-Var, the approximate Hessian of the cost function is the sum of the Hessian of the
observation term of the cost function and of the Hessian of Jb +Jq:
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This matrix is not block diagonal: the off-diagonal terms provide the propagation of the signal in time, across the
sub-windows boundaries. This problem is fully four dimensional, in contrast with the model error formulations
which are essentially initial condition problems with additional parameter estimation and where the additional
parameters happen to represent model error. This changes the properties of 4D-Var and of the associated
optimisation problem.
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5.4 Simplified case

Assuming that the model state doesn’t evolve too much in one time step, the approximation Mi ≈ I can be
used for illustrative purposes. For this simplified case study, we also assume that the model error covariance
matrix is invariant in time and equal to the background error covariance matrix: B = Q0 = Qi for i = 1, . . . ,n.
A change of variable similar to the one used in strong constraint 4D-Var can be applied:

χ = Q−1/2δx

where, for this illustrative case, Q is the block diagonal matrix whose blocks are {Qi}i=0,...,n. The Hessian of
the preconditioned minimisation problem becomes:

Ĵ” = A+QT/2HTR−1HQ1/2 (11)

where A is the Hessian of the preconditioned Jb +Jq component of the cost function:

A =

















2I −I 0
−I 2I −I

. . . . . . . . .
−I 2I −I

0 −I I

















.

The fact that this simplified matrix A is not block diagonal is one of the major differences with strong constraint
4D-Var where it is the identity matrix, as shown by equation (10). Here, it is very similar to the Laplacian
operator, acting as a smoother, thus spreading and filtering information. Its eigenvalues are bounded by 0 and
4. Based on the assumptions of Andersson et al. (2000), this implies that the largest eigenvalue when the
observation term is added is of the order of:

λmax ≈ 4+2nobs/m(σq/σo)
2

where the density of observations is reduced by a factor m compared to the strong constraint case assuming that
observations are well distributed in time. This is a result from the fact that only the observations within each sub-
window contribute to the observation term of the cost function for that sub-window. The maximum eigenvalue
is similar to the maximum eigenvalue of the Hessians of strong constraint 4D-Var for the sub-windows.

In strong constraint 4D-Var, the minimum eigenvalue of the Hessian of the cost function is one. This simplified
example shows that it is not true in this weak constraint formulation. The minimum eigenvalue is smaller than
one and tends to zero as m increases. In the illustrative example given above, the matrix A can be formed
explicitly and its minimum eigenvalue can be computed with a standard linear algebra package1 . The results
show that it decreases with m as 1/m2. The condition number of the full Hessian would thus be of the order
of:

κ ≈ 2mnobs (σq/σo)
2

This example shows that the condition number of 4D-Varx can be higher than the condition number of strong
constraint 4D-Var and that it can increase with the number of sub-windows in the assimilation window. It seems
reasonable that the number of iterations required to solve the minimisation problem, i.e. the condition number,
increases with m since it takes m iterations to propagate information across the whole window through the Jq

1The eigenvectors method from the python package numarray was used here. More information is available at
http://www.stsci.edu/resources/software hardware/numarray.
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coupling terms. This could create difficulties for the implementation of this formulation of weak constraint
4D-Var, in particular in the case of long windows as proposed by Fisher et al. (2005).

The simplified matrix A is a sparse matrix for which an inverse square root can easily be computed. It can be
used to provide a better preconditioner for the minimisation. Because the inverse square root of A is also a
sparse matrix, such a preconditioner is affordable, both in terms of storage and computations. Preconditioning
the weak constraint 4D-Var optimisation problem with an inverse square root of A bears resemblance with
preconditioning the strong constraint 4D-Var with an inverse square root of B: it amounts to preconditioning
the minimisation using an approximation of the Hessian of the cost function where the observation term has
been neglected. Even though the condition number of the weak constraint 4D-Var might seem higher than for
strong constraint 4D-Var, it is expected that with appropriate preconditioning, the condition number, and the
computational cost that depends on it, could be reduced to similar levels as in strong constraint 4D-Var. Our
intention here is only to highlight some differences between strong and weak constraint 4D-Var and precondi-
tioning is an aspect that will require further investigation for an efficient implementation of this formulation of
weak constraint 4D-Var.

Without a background term in the cost function, the matrix A would not be positive definite. This is an
illustration in the weak constraint framework of the fact that without a background term the 4D-Var problem is
not necessarily well posed.

5.5 Comments

This very simplified study of the Hessian of the weak constraint 4D-Var cost function illustrates some of the
differences with strong constraint 4D-Var. However, because it is very simplified, some aspects were not taken
into account. For example, because of the similarity of the simplified Hessian with the Laplacian operator,
the eigenvectors associated with the lowest eigenvalues should be slowly varying in time and might be well
observed. They would project onto eigenvectors of the Hessian of Jo for large eigenvalues, increasing the
lowest eigenvalues and reducing the condition number. Other improvements are possible. For example, Jukes
(2005) suggested treating weak constraint 4D-Var as an elliptical problem, and using a multi-grid approach to
solve it. The ill-conditioned, slowly varying components might be resolved cheaply on the coarser grids while
more rapidly varying aspect would be resolved on the finer grids. Another factor which has been ignored here
is that, for a given assimilation window, as m increases, the length of the sub-windows and thus σq should
decrease. This might reduce the condition number, although the exact dependence of σq on m is difficult to
estimate.

When model error is correlated in time, the Hessian of the cost function is not block tri-diagonal: it becomes
a full matrix. The approximation given above is no longer valid. The cost of computing the Jq terms at
each iteration might become significant in the overall cost of 4D-Var. It also becomes more difficult to find
an approximation of the Hessian of the cost function that can be used for preconditioning without further
hypothesis on the form of the correlations. The property that the tangent linear and adjoint models can be
integrated independently within each sub-window remains. Computing Jq by blocks of the form [Mi(xi−1)−
xi]

TQ−1

i,j [Mj(xj−1)−xj ] might allow enough parallelism to make the computation affordable. Determining
the appropriate correlation statistics would however remain a major difficulty.

An important aspect of this formulation of weak constraint 4D-Var is that a four dimensional atmospheric state
is sought, not model error itself. This is closer to the original estimation problem presented in section 2 and
does not rely explicitly on any particular form of model error. Assumptions will only be required to define the
model error covariance matrix Q. In that respect, it is more general than the other two formulations of weak
constraint 4D-Var presented here.
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6 Discussion

6.1 Bias and systematic error

The choices of x, (x0,η) or (x0,β) as control variable are equivalent in the sense that they can be used
indiscriminately to represent the full four dimensional solution. However, the approximations that η is constant
in time, or that β is constant in time, are not equivalent and they lead to different optimisation problems.

The approach comprising estimation of a representation of model bias in 4D-Var has several interesting prop-
erties. The first one is that the model state is not directly modified and the model equations are not disturbed by
this component of the control variable, avoiding in particular spin-up and balance issues. The bias is estimated
in addition to the initial condition. It can be added to the analysis or to the forecast fields at post-processing
stage if bias-corrected fields are required. It should not be added to the analysis before starting the forecast as
it would evolve according to the model equations and not be preserved over time as intended in the analysis.
This recognises the fact that the model is biased and prefers biased states.

This is different from a formulation where systematic model error forcing is estimated. In that case, a stationary
source term is added to continually force the model towards an unbiased state which does not correspond to the
natural state of equilibrium of the model. The forcing term is intended to prevent the drift of the model away
from the true state. In contrast, the bias term is intended to estimate the discrepancy between the preferred state
of the model and the true state without correcting the model.

The model bias determined in the 4D-Varβ formulation is not the actual bias of the model with respect to the
true atmospheric state; it is the bias of the model with respect to the available information i.e. a weighted
mean of all observations. It cannot correct for bias in one set of observations against the model or against
other observations but it could complement methods like variational observation bias correction (VarBC) by
accounting for the global bias of the system if the sources of bias can be properly separated.

One danger of this approach is that the bias term might absorb the signal brought by observations and it is
important to separate the two aspects. The first tool for this is to specify appropriate statistics in the covariance
matrix as it filters the bias from the remaining signal. It might also prove necessary to add a background term
for the bias component of the control variable to the cost function to allow only for slow variations of the model
bias. This seems reasonable since the model is the same every day and systematic error should not vary rapidly
from day to day. This would however allow for seasonal variations. The covariance matrix filters the bias in
space while a bias background term would filter it in the time dimension.

This should be put in relation with some of the pitfalls of bias correction described by Dee (2005). In compar-
ison to figure 6 of that paper, the present approach would provide an analysis consistent with the model, on a
path parallel to observations, as shown on figure 1, but providing an estimate of the distance between model
and observations. The issue of finding an unbiased reference state is still present as the estimation of the bias is
only relative to observations.

The statistical theory behind variational data assimilation assumes that all errors in the system are unbiased. If
the bias as described in the 4D-Varβ is a true bias, it could be estimated in addition to the random component
of model error. It is, in principle at least, possible to envisage an implementation of weak constraint 4D-Var
where a slowly evolving bias, as defined in the 4D-Varβ formulation, is estimated in addition to the unbiased
four dimensional state of the atmosphere, as defined in the 4D-Varx formulation of weak constraint 4D-Var.
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(a) Weak constraint 4D-Var
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(d) Assimilation window is moved forward
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Figure 4: Long window weak constraint 4D-Var implemented with a sliding window. See text for a detailed
explanation.

6.2 Long window 4D-Var

As shown by Fisher et al. (2005), an additional motivation to develop weak constraint 4D-Var is that when the
assimilation window becomes long enough, it is equivalent to a full rank Kalman smoother. Another approach
to the implementation of long window weak constraint 4D-Var is presented below.

Consider a weak constraint 4D-Var data assimilation system with model state control variable defined at regular
intervals over the assimilation window as described in section 5 (4D-Varx) and represented in figure 4(a). When
a given assimilation cycle has converged, instead of the usual cycling implemented currently in 4D-Var, it is
possible to extend the assimilation window by one sub-window as shown in figure 4(b). This could be repeated
but the assimilation window would soon become too long for the problem to be manageable. However, as
already pointed out by Fisher et al. (2005), after a certain number of cycles, the solution in the first sub-window
is already very accurate and should not evolve any more. There are two reasons for this: the solution for that
sub-window has converged because it is already the result of many iterations of the minimisation algorithm and
the additional observations at the end of the overall window do not have an impact on the solution far enough in
the past because Jq acts as a forgetting factor. Thus, it is possible to consider that the solution over the first sub-
window is fixed. The Jb term of the cost function becomes a constant and the first Jq component is computed
from a constant M1(x0). This is shown in figure 4(c) where the dashed lines represent constant values. Since
Jb is constant, it can be removed from the cost function in the new minimisation problem. The component of the
control variable at initial time can be removed from the minimisation problem. The only required information
from the first sub-window is the now fixed final state M1(x0). In practice, one sub-window has been removed
at the beginning of the assimilation period and one added at the end: the assimilation window has shifted by
one sub-window period. The Jb term has been replaced by a Jq term computed from the fixed value of the
solution at the end of the previous sub-window. This is shown schematically in figure 4(d).

The process can be repeated with an analysis window which progressively moves forward. The Jb term only
needs to be present in a warm-up phase, when initiating the cycling. It is then progressively forgotten. As
explained in section 2, the theoretical formulation of 4D-Var imposes that the background state is independent
of the observations. It comes from an earlier analysis cycle where none of the observations in the current
window were used. With assimilation windows of the order of 5 to 10 days, the background state might
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become inaccurate and affect the quality of the analysis. Here, the initial Jq term ensures that each approximate
problem is well posed and the solution consistent in time without being subject to that requirement. It eliminates
a potential difficulty from the long-window 4D-Var system as described by Fisher et al. (2005). Another
consequence is that the simplified Hessian matrix A introduced in the previous section is always positive
definite and might be used as a preconditioner. It is necessary that the assumption made above is verified and
that the total window is long enough for the additional observations not to have an impact on the solution before
the start of the window, otherwise, the Jb term should be used.

This algorithm is an approximation of weak constraint 4D-Var with an assimilation window that extends for as
long as the assimilation has run. This seems particularly interesting in a reanalysis context where one could get
a consistent four dimensional estimate of the atmospheric state for very long periods of time and where each
analysis has been influenced by future as well as past observations.

As noted above, when the assimilation window becomes long enough, weak constraint 4D-Var becomes equiv-
alent to a full rank Kalman smoother. The method outlined here might provide an efficient algorithm for
implementing it.

6.3 Applications

A simple application of weak constraint 4D-Var with 4D state control variable would comprise splitting the
assimilation window into a limited number of sub-intervals. The simplest case would be to use the current
ECMWF operational 12 hours assimilation window split into two 6 hours sub-windows. Such a system should
be better than a 6 hours strong constraint 4D-Var system because it solves two cycles at once, taking into
account information from the adjacent sub-window through the Jq coupling. It is also potentially better than
a strong constraint 12 hours system because it takes into account the information that the model is not perfect
through the extra degrees of freedom available to solve the problem and through the model error covariance
matrix. With such a restrictive approximation, this can be interpreted as coupling two cycles of 6 hours strong
constraint 4D-Var as much as a weak constraint 4D-Var. This interpretation would justify using a 6 hours
background error covariance matrix as an approximation for the model error covariance matrix.

At the other extreme, when the control variable is defined as the model state at every time step, each sub-
window reduces to an instantaneous problem: 3D-Var. Weak constraint 4D-Var is then equivalent to a set of
3D-Var problems defined at each time step in the assimilation window and solved together as one coupled
optimisation problem. This is of course not possible in practice but it can lead to another approximation of
weak constraint 4D-Var. The control variable being defined at regular intervals in the assimilation window,
the assimilation problem within each sub-window can be solved as a 3D-Var problem. This is equivalent to
neglecting the model in the observation term of the cost function defined by equation (9). The coupling through
the Jq terms would propagate the signal and provide consistency in time. This allows an implementation of
an approximation of weak constraint 4D-Var where the observations part of the code (Jo computation) and the
forecast model (Jq computation) can be kept independent of each other. This reduces greatly the complexity of
the code and can be considered as an advantage. It also has the advantage over 3D-Var that the time dimension
is taken into account, alleviating the main weakness of 3D-Var. However, and unlike in 3D-Var, the adjoint
model is needed to compute the gradient of Jq .

In an incremental implementation where the assimilation window is moved forward when the solution has
converged in the initial sub-window, the shifting of the window would be a natural time to re-linearise the
problem and start the next outer loop iteration. This would imply that each sub-window sees as many outer loops
as there are sub-windows in the overall assimilation window. In the short term, with a small number of sub-
windows, this seems reasonable in light of the results obtained by Trémolet (2005) on outer-loop convergence.
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Once a weak constraint 4D-Var system is in its stable regime, because the first sub-window of a given analysis
cycle has already seen many iterations, it should converge very quickly. Only a few iterations should be needed
before it converges and the window can be moved forward again. The concept of cycling becomes less obvious
as the assimilation moves forward in time in a quasi-continuous mode if the sub-windows are short enough. In
an operational context, the window could be shifted forward as soon as the observations are available, in shorter
steps than the current cycling. This could provide almost continuously an up to date analysis and could be very
useful for short range forecasting data assimilation applications.

7 Conclusion

Weak constraint 4D-Var is a generalisation of the more widely developed strong constraint 4D-Var where
one simplifying assumption, namely the assumption that the forecast model is perfect over the length of the
assimilation window, is removed. In addition to lifting a questionable assumption, model error is valuable
information which can be used in several ways. It can be added as forcing in the forecast model or at the post-
processing stage to correct the forecast. It is hoped that it will also help identify model deficiencies thereby
leading to model improvement.

Three alternatives have been presented to remove or alleviate this approximation, using model bias, model error
forcing or model state for control variable as summarised in table 1. The main conclusion is that when using
model bias (4D-Varβ) or model error forcing (4D-Varη) as the control variable, the problem is very similar in
nature to strong constraint 4D-Var: it is essentially an initial condition problem with parameter estimation where
the additional parameters represent model error. The information is propagated directly between the initial
condition and the observations by the tangent linear and adjoint models. The cost function is four dimensional
but the solution over the whole assimilation window depends directly on the initial condition component of the
control variable which is only defined over a three dimensional space. On the other hand, when model state is
used as the control variable (4D-Varx), information is propagated in time through the model error term of the
cost function and filtered by the model error covariance matrix. The model error term acts both as a coupling
term propagating information between the sub-windows and as a forgetting factor through the filtering imposed
by the covariance matrix and the fact that the model equations are not strictly verified. In that case, the problem
is fully four dimensional. Another advantage of this implementation is that the tangent linear and adjoint
models are only integrated for the interval between the successive components of the control variable. This has
three important consequences: the tangent linear approximation is more accurate, the forward and backward
integrations can be run in parallel for each interval and there is no need to choose a particular representation for
model error.

The three options described in this paper for taking into account model imperfections in 4D-Var have been
developed and are being evaluated at ECMWF, in operational and reanalysis environments. The initial config-
urations being tested are relatively simple: constant model error forcing, constant model bias and model state
control variable with two to four components within an assimilation cycle. These will provide results for a
realistic comparison of the algorithms described here and a testbed for evaluating various formulations of the
model error covariance matrix, since this remains a major question for a successful implementation of weak
constraint 4D-Var. In the near future, a system where the assimilation window could be moved forward by one
sub-window could be envisaged, for example with a 12 hours window moved forward by 3 or 6 hours steps
and where the problem would be re-linearised when the window is moved forward. At this stage, a background
term would be necessary as the window would be too short to ignore the influence of observations at the end of
the window on the initial state. Progressively, longer windows and shorter sub-windows could be considered
as experience is gained with respect to the weak-constraint algorithms, long windows, outer loop convergence
and as more computer power becomes available.
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The approach comprising coupling sub-windows to solve a larger data assimilation problem can be generalised.
First, it can be extended to spatial sub-domains in addition to temporal ones. This has been experimented in
a simple case by Trémolet and Le Dimet (1996). Then, one can consider another generalisation where the
model in each sub-window or sub-domain is not the same. A practical application would be coupling of an
atmospheric model with an ocean model. As long as the coupling is expressed through a weak constraint term,
the only requirement is for synchronisation between iterations of the minimisation algorithm. The tangent
linear and adjoint of each model can be integrated independently, without the need for explicit coupling. Such
an interface could in principle be added relatively easily to existing atmospheric and ocean assimilation systems.
In a similar fashion, this might be applied to couple atmospheric analysis with surface fields analysis, including
sea surface temperature. This could improve the consistency between the lowest atmospheric levels and the
surface and bring additional information from the atmosphere into the surface fields and vice versa. Finally,
another generalisation could be envisaged where the domains overlap but for models of a different nature.
Several applications are possible. A global assimilation system could be coupled with a regional system, a
weak constraint term being defined as the distance of the two solutions over the whole overlapping domain,
not only the boundary condition. Another example would be the coupling of a numerical weather prediction
model which an atmospheric chemistry model. Combinations of the above are also possible, at least from an
algorithmic point of view. Of course, as with most data assimilation applications, success will depend on the
ability to determine appropriate error statistics for the coupling constraints.
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