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ABSTRACT

The unresolved scales of motion in atmospheric general circulation models are typically modeled using the ensemble
mean or Reynolds average within a grid-cell. Such schemes may not be capable of representing the true variability of the
real atmosphere. According to the measurements of Nastrom and Gage [ 24], the observed kinetic energy spectrum of the
atmosphere contains a kink, where the spectral slope changes from �3 at large scales to �5�3 in the mesoscale regime.
Lindborg [20] and Waite and Bartello [31] present evidence that the large scale spectrum is dominated by rotational
modes, whereas the ageostrophic or divergent modes are responsible for the �5�3 regime. To analyze the impact of
stochastic parameterizations on the large scale dynamics, the tangent linear (TLM) and adjoint models can be applied.
Our goal is to investigate how stochastic forcings project onto rotational and wave modes.

1 Introduction

Atmospheric processes are inherently multiscale as they involve a wide and often disparate range of spatial
and temporal scales. For example, the dominant synoptic weather patterns encompass spatial scales spanning
thousands of kilometers, whereas moist convective processes occur on length scales ranging down to a micron.
For certain types of meteorological phenomena, such as tropical cyclones, it is important to accurately model
both the local effects and the evolution of the ambient synoptic scale, where the time scale is typically on
the order of a few days. However, for the numerical simulation of the Earth’s climate, temporal scales range
from several months to decades and even centuries, thus imposing formidable computational challenges. De-
spite the sophisticated numerical modeling techniques that have emerged over the past two decades, current
models are not capable of resolving the full range of length and time scales. In particular, the unresolved
physical processes within a grid cell are represented by bulk parameterizations which employ the ensemble
mean or Reynolds average. These schemes are not capable of representing the full variability of the real at-
mosphere, preventing the climatological distribution from matching that of nature. Indeed, there are several
factors contributing to this problem. Numerical approximation errors at resolved scales may change climate
means. Improved numerical methods should reduce the discretization error, however, truncation errors are
impossible to avoid. Furthermore, numerical models generally include unphysical dissipation or filters for
stability. Recent mesoscale model implementations [27] restrict the amount of dissipation and encompass a
broader range of the true mesoscale in the inertial sub-range. Turbulence closure schemes may not fully ac-
count for all scales below the truncation wavenumber kT . One manifestation of these model deficiencies is the
lack of a k�5�3 scaling law in the mesoscale.

To date, the response of the resolved scales to random fluctuations has not been studied in a GCM that fully
supports scales below the observed spectral kink. We review a few current approaches, and suggest that a new
set of tools is required to address a critical question: how does subgrid-scale stochastic uncertainty propagate
upscale to interact with flows distinctly possessing both large-scale rotational modes and mesoscale divergent
modes?
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2 The Spectral Kink

Nastrom and Gage [24] collected observational data indicating that the energy spectrum of the Earth’s atmo-
sphere contains a spectral kink separating large and small scales. Their spectra cover scales ranging from 3 km
to nearly 10,000 km. The observed spectrum is characterized by an enstrophy cascade at large scales and an
energy cascade at small scales. Charney attributes the �3 slope at scales above 1000 km to quasi-geostrophic
turbulence. The mesoscale dynamics follow a Kolmogorov �5�3 spectral slope. Two different mechanisms
have been proposed to explain the observed mesoscale spectra. The first is strongly nonlinear and based on
quasi-2D turbulence. Lilly [17, 18] postulated that it is due to stratified turbulence at small scales. The sec-
ond mechanism is based on a weakly nonlinear wave theory involving the spectrum of internal waves. At
length scales below 1000 km, Lilly suggests that small scale sources of energy could be provided by thunder-
storms and breaking internal waves. Small-scale shear instability may also contribute. He argues that only a
small amount of this energy needs to inverse cascade in order to account for the observed mesoscale spectrum.
Some of these types of atmospheric flows are nonhydrostatic, and therefore to reproduce the observed energy
spectrum of the Earth’s atmosphere might require running a global nonhydrostatic model with prescribed heat
fluxes. The horizontal resolution of such a simulation would have to be on the order of 1 km in order to resolve
the vertical convection leading to mesoscale storms or wave breaking.

The second mechanism is based on a weakly nonlinear wave theory involving the spectrum of internal waves.
The latter has been explored by Garrett and Munk [10]. Indeed, there is evidence suggesting that this is the
case in the ocean [7]. Dewan [4] and Van Zandt [30] have also suggested that the observed spectra are due
to waves. This contribution is from modes not possessing potential vorticity, but not necessarily with high
linear frequencies. If this is true for the atmosphere, then a 3D hydrostatic primitive equations model may
be capable of correctly capturing the dynamics of the Earth’s atmosphere. The length scales involved may
be accessible at current weather model resolutions [27]. However, the time scales may be more restrictive as
the explicit treatment of gravity waves could be important. Nevertheless, it would be extremely important to
atmospheric modelers to determine whether or not the primitive equations are adequate for reproducing the
observed dynamics of the global circulation. There is tentative evidence suggesting that the spectral kink is
visible in results from the hydrostatic GFDL-Princeton SkyHi model, Koshyk et al [13]. Their approach is to
use explicit methods and resolve as much as possible. Bartello [1] observes that it is important to respect the
gravity wave Courant number in order to correctly capture the ageostrophic modes and thereby reproduce the
spectral kink. Indeed, by varying the time step size, it may be possible to alter the location of the transition
from a �5�3 to a �3 slope. The impact of stochastic sub-grid scale closures on the dynamics of the resolved
scales and the resulting kinetic energy spectrum is an open question.

3 Stochastic Parameterizations

Typically, closure is achieved by assuming a scale separation and Reynolds averaging the Navier-Stokes equa-
tions. Sub-grid scale (SGS) processes are represented by empirical results (e.g. planetary boundary layer and
surface-atmosphere interactions) or physical arguments (e.g moisture-flux based deep convection) that suggest
relationships between large-scale and perturbation quantities. The sub-grid scale mean effect is included as
a tendency of resolved variables and simultaneously acts in a dissipative fashion to remove energy from the
truncation scale. Despite the remarkable success of this approach, increased computational power is enabling
GCMs to simulate and forecast finer scales, below which these schemes remain valid. The inclusion of stochas-
tic terms has emerged as an alternative and tacitly admits the fact that it may not be possible to deterministically
represent processes below the truncation scale. In general, plausible classes of stochastic SGS closures include
a random component that responds to resolved conditions.

38



THOMAS, S.J. ET AL.: STOCHASTIC SUB-GRID SCALE MODELS AND THE SPECTRAL KINK

It is widely recognized among the atmospheric sciences community that atmospheric GCMs underestimate
the variability of tropical moist convection [19]. Stochastic sub-grid scale models have been suggested as an
alternative [19, 25, 26, 32, 22, 12] to represent the variability of the unresolved scales. While in most cases the
stochasticity is introduced by adding a white or red noise into the deterministic small scale forcing in an ad hoc
fashion, Majda and his collaborators [22, 12] have proposed a systematic coarse graining procedure of Ising
type–Markov jump processes modeling the underlying microscopic dynamics of the physical phenomenon
being parameterized, i.e. in their case, convective inhibition (CIN). Nevertheless, the procedure can be easily
expanded and generalized to account for many other sub-grid effects such as cloud radiative feedback, gravity
wave activity, sea ice, etc. The results obtained in [12] for the case of an idealized tropical climate convective
parameterization are very promising. It is demonstrated that, under some parameter regimes, the stochastic
parameterization affects a great deal the climatology as well as the large scale variability. More importantly,
their results are very sensitive to the strength of the microscopic interactions and to the characteristic time
scale of the microscopic model. One of the goals of our work is to examine how the coarse grained stochastic
models of Majda and his collaborators influence the large scale dynamics of a realistic GCM.

4 Tangent Linear and Adjoint Models

A novel use of the TLM and adjoint is to determine leading finite-time sensitivities to stochastic SGS closure
schemes in the GCM. Stochastic schemes are intended to represent the unavoidable uncertainty in unresolved
scales. Individual realizations of that uncertainty can also be considered perturbations to the resolved flow,
analogous to perturbations intended to represent uncertainty in initial conditions. The most viable technique
available to quantify the sensitivity to small perturbations is the singular vector method, which requires a TLM
and its adjoint. The technique has been used extensively at synoptic scales, where the flow is dominated by
rotational modes. Ehrendorfer and colleagues [5, 6] also used singular vectors to study optimal perturbations
in both a dry and moist mesoscale TLM, and their work is perhaps the seminal study in the mesoscale pre-
dictability literature. Here we distinguish between intrinsic predictability, which is a property of the system,
and extrinsic predictability, which is more akin to the maximum achievable predictive skill [28] [29] because
it includes flaws in our models and observing capability. Optimal perturbation analysis, via identification of
the leading singular vectors, is the study of intrinsic predictability relative to a chosen uncertainty norm.

Lorenz [21] first recognized the importance of singular vectors in examining finite-time perturbation growth.
The leading singular vectors are optimal finite-time perturbations and finding them is a linear optimization
problem. Farrell [9] demonstrated their utility in identifying optimal perturbations for cyclogenesis. In ref-
erence [5] the problem was generalized for atmospheric predictability studies, and here we summarize the
important concepts. The maximization, over the time interval τ , leading to the definition of the singular vec-
tors can be written as:

� �a� � �Bτa�T C�Bτa� � (1)

subject to the constraint aTCa. Matrix B contains the linearization of operators Bn, the superscript T represents
the transpose, and matrix C is the norm definition. Defining

S�C�1 �Bτ�T CBτ �

the solution to the maximization problem (1) is the first eigenvector of S. The complete set of eigenvectors are
also the singular vectors.

The solution depends on the norm, which we choose in order to identify the upscale “error cascade” associated
with stochastic SGS parameterizations in multiscale flow. We propose uncertainty norms appropriate for sep-
arately measuring the influence of SGS uncertainty on mesoscale divergent modes and large-scale rotational
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modes. Ehrendorfer and Errico [5] compared the spectrum of singular values and the associated singular vec-
tors computed with the oft-used total energy (TE) norm to those computed with a derived “rotational” norm
(called the R norm), which included energy in only the rotational modes. The TE norm included contributions
from gravity waves and thus resulted in many more growing modes than the rotational norm. They concluded
that much of the growth in the TE optimal perturbations is due to gravity waves introduced by geostrophic
adjustment, and they are either damped or rapidly propagate out of the limited-area domain, leaving potential
energy behind. The spatially-white noise perturbations they employed had a small likelihood of projecting
onto the rotational modes that grew over the short time scales. Those results are compelling, but are limited in
two fundamental ways: relatively short residence time of gravity waves owing to lateral boundary conditions,
and the lack of gravity-wave breaking that may produce a k�5�3 spectrum. Removal of these limitations will
enable a more complete picture of unstable perturbations.

We envision a global rotational norm similar to [5], and separately derive a global divergent-mode norm (here-
after the D norm). These global norms are relatively easy to compute and we do not have to resort to an
explicit normal-mode initialization to isolate gravity waves. We can then compute the leading singular vectors
and the associated spectrum of singular values of each to determine their responses to plausible classes of
SGS uncertainty. The optimization time for those norms, which is constrained by the validity of the tangent-
linear approximation, is somewhat of a research problem itself, but published results provide guidance. For the
large-scale rotational norm, an optimization time of 24 h should be useful. Gilmour et. al. [11] showed that the
linear approximation is sometimes valid for that length in the European Centre for Medium-Range Weather
Forecasting operational GCM. Ehrendorfer and collaborators [5, 6] used a 24 h optimization time successfully.
Optimization times as long as 72 hours have also been used for large-scale flow problems [14].

The concept of instantaneous optimals suggests that a very short optimization time will be effective and ap-
propriate for the D norm. Recently, DelSole [3] clarified the role of instantaneous optimals, which are per-
turbations that maximize instantaneous growth rates of energy (or potential enstrophy) in turbulent dynamics.
At the short-time limit, these are indistinguishable from finite time optimal perturbations based on an energy
(or potential enstrophy) norm. As noted by the author, this implies that at least one finite optimal perturbation
will grow in all turbulent systems. DelSole [3] derived these properties with a generic nonlinear discretized
forced-dissipative system, and noted that in typical implementations the dissipation results in more decaying
modes than growing modes. He also noted that mesoscale models are typically not of that generic form be-
cause of high-order nonlinearities in parameterizations of radiation and convection as well as contravariant
vertical velocity terms in terrain-following coordinate systems. Strong nonlinearity in the stochastic parame-
terizations will be avoided for these reasons, but weak nonlinearity can be retained and results will still apply
to a wide range of SGS stochastic processes. The nonlinearity associated with divergent modes is also retained
and handled by using short optimization times in the singular-vector computations.

To ensure that our stochastic schemes do not affect the scaling laws intrinsic to the nonlinear model, optimal
perturbations can be computed for the R and D norms with zero optimization time. The tangent-linear approx-
imation will also be verified by perturbing the full nonlinear model at t0 with the linear combination of the
singular vectors. The R and D norms are computed to measure the phase-space distance between perturbed
and unperturbed solutions as a function of time. The linearity assumption is violated when the norms begin
to grow nonlinearly. These experiments also provide for examination of the upscale error cascade in spectral
space through both the k�5�3 and k�3 spectral regimes. The typical view of constant upscale error energy flux
in spectral space [16, 29] for the k�3 regime can be verified, and a picture consistent with the k�5�3 regime will
emerge.

The analysis described above is suitable for time scales shorter than typical weather forecasts because of the
requirements for linearity to be valid. We propose to extend the validity of our results, perhaps to climate time
scales, by investigating recently developed techniques that show potential to avoid the constraint of linearity.
An ensemble-adjoint method [15, 8] uses an average of adjoint sensitivity computed over a range of perturba-
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tions, over a relatively short time scale, to approximate the nonlinear sensitivity in climate limit. Mu et. al.
[23] proposed a conditional nonlinear optimal perturbation (CNOP) approach to solve the nonlinear problem
analogous to the singular-vector approach described above. The results are promising, but the optimization
problem may be difficult to solve for a GCM. These techniques can be verified with selective identical twin
experiments utilizing the full nonlinear stochastic-dynamic GCM.
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