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1. Introduction
The current practical models for prediction of both weather and climate involve general circulation models

(GCM) where the physical equations for these extremely complex flows are discretized in space and time and

the effects of unresolved processes are parametrized according to various recipes. With the current generation of

supercomputers, the smallest possible mesh spacings are about 50-100 km for short-term weather simulations

and of order 200-300 km for short term climate simulations. There are many important physical processes

which are unresolved in such simulations such as the mesoscale sea-ice cover, the cloud cover in sub-tropical

boundary layers, and deep convective clouds in the tropics. An appealing way to represent these unresolved

features is through a suitable coarse-grained stochastic model which simultaneously retains crucial physical

features of the interaction between the unresolved and resolved scales in a GCM. In work from 2002 and 2003,

the authors both have developed a new systematic stochastic strategy (Majda and Khouider 2002, Khouider

et al. 2003) to parametrize key features of deep convection in the tropics involving suitable stochastic spin-

flip models and also a systematic mathematical strategy to coarse-grain such microscopic stochastic models to

practical mesoscopic meshes in a computationally efficient manner while retaining crucial physical properties

of the interaction (Majda and Khouider 2002, Khouider et al. 2003). This last work is based on new strategies to

systematically coarse grain stochastic lattice models which have achieved a computational speed up of order one

billion in various materials science applications (Katsoulakis et al. 2003a, Katsoulakis et al. 2003b, Katsoulakis

and Vlachos 2003). These procedures are tested on prototype deterministic/stochastic lattice models with a

variety of dynamic bifurcations and phase transitions in recent work (Katsoulakis et al. 2003a, Katsoulakis et

al. 2003b, Katsoulakis and Vlachos 2003).

As regards tropical convection, crucial scientific issues involve the fashion in which a stochastic model effects

the climate mean state and the strength and nature of fluctuations about the climate mean. Here the strategy

to develop a new family of coarse-grained stochastic models for tropical deep convection is briefly reviewed

(Majda and Khouider 2002, Khouider et al. 2003). In (Khouider et al. 2003), it has been established that

in suitable regimes of parameters, the coarse grained stochastic parametrizations can significantly alter the

climatology as well as increase wave fluctuations about the climatology. This was established in (Khouider et al.

2003) in the simplest scenario for tropical climate involving the Walker circulation, the east-west climatological

state which arises from local region of enhanced surface heat flux, mimicking the Indonesian marine continent.
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2. The Microscopic Stochastic Model for CIN
In a typical GCM, the fluid dynamical and thermodynamical variables, denoted here by the generic vector,~u,

are regarded as known only over a discrete horizontal mesh with~u j =~u( j∆x, t) denoting these discrete values.

Throughout the discussion, one horizontal spatial dimension along the equator in the east-west direction is

assumed for simplicity in notation and explanation. As mentioned above, the typical mesh spacing in a GCM is

coarse with∆x ranging from 50 km to 250 km depending on the time duration of the simulation. The stochastic

variable used to illustrate the approach is convective inhibition. Observationally, convective inhibition (CIN) is

known to have significant fluctuations on a horizontal spatial scale on the order of a kilometer, the microscopic

scale here, with changes in CIN attributed to different mechanisms in the turbulent boundary layer such as gust

fronts, gravity waves, and turbulent fluctuations in equivalent potential temperature (Mapes 2000). In (Khouider

et al. 2003), it was proposed that all of these different microscopic physical mechanisms and their interaction

which increase and decrease CIN are too complex to model in detail in a coarse mesh GCM parametrization

and instead, as in statistical mechanics, should be modeled by a simple order parameter,sI , taking only two

discrete values,

sI = 1 at a site if convection is inhibited (a CIN site)

sI = 0 at a site if there is potential for deep convection (1)

(a PAC site).

The value of CIN at a given coarse mesh point is determined by the averaging of CIN over the microscopic

states in the vicinity of the given mesh point, i.e.,

s̄I ( j∆x, t) =
1

∆x

∫ ( j+1/2)∆x

( j−1/2)∆x
sI (x, t)dx. (2)

Note that the mesh size,∆x, is mesoscopic, i.e., between the microscale,O(1 km), and the macroscale,O(10,000 km),
and thats̄I can have any value in the range 0≤ s̄I ≤ 1. Discrete sums over microscopic mesh values (of order

1 km) and continuous integrals are utilized interchangeably for notational convenience.

As discussed in (Khouider et al. 2003), the microscopic CIN sites interact with each other and with the external

mesoscopic variables,~u j , through a set of plausible interaction rules. These rules are summarized through the

microscopic energy for CIN in the boundary layer given by

Hh(sI ) =
1
2 ∑

x6=y

J(x−y)sI (x)sI (y)+hext∑
x
sI (x) (3)

whereJ is a symmetric interaction potential andhext is an external potential. Note that the microscopic energy

is a monotonic increasing function of the external fieldhext. The boundary layer states are regarded as a heat

bath coupled to the mesoscopic variables~u j via the external potentialhext so that the equilibrium statistics are

given by the Gibbs measure

G(s) =
1

ZΛ
ebHh(s)ds (4)

For the microscopic dynamics, a configuration randomly flips at a sitex,

sx
I (y) =

1−sI (y), if y = x

sI (y) if y 6= x
(5)
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as a jump Markov process where the ratec(s ,x) is given by the Arrhenius adsorption/desorption model

c(s ,x) =

 1
tI

e−bV(x), if sI (x) = 1

1
tI

if sI (x) = 0
(6)

and for whichG(s) is the invariant measure (Katsoulakis et al. 2003b), with

V(x) = ∑
z6=x

J(x−z)sI (z)+hext. (7)

HeretI is the characteristic interaction time.

3. The Simplest Coarse-Grained Stochastic Model for CIN
In practical parametrization, it is desirable for computational feasibility to replace the microscopic dynamics by

a process on the coarse mesh which retains critical dynamical features of the interaction. Following the general

procedure developed and tested in (Katsoulakis et al. 2003a, Katsoulakis et al. 2003b, Katsoulakis and Vlachos

2003) the simplest local version of the systematic coarse grained stochastic process is developed in (Khouider

et al. 2003) and summarized here.

Each coarse cell∆xk, k = 1, · · · ,m, of the coarse-grained lattice is divided ontol microscopic cells such that

∆xk ←→
1
l {1,2, · · · , l},k = 1, · · · ,m. In the coarse-grained procedure, given the coarse-grained sequence of

random variables

ht(k) = ∑
y∈∆xk

sI ,t(y), (8)

so that the average in (2) verifies s̄I ( j∆x) = h(k)/l , for j = k in some sense, the microscopic dynamics is

replaced by a birth/death Markov process defined on the variables,{0,1, · · · , l}, for eachk such thatht(k)
evolves according to the following probability law.

Prob
{
ht+∆t(k) = n+1|ht(k) = n

}
= Ca(k,n)∆t +o(∆t)

Prob
{
ht+∆t(k) = n−1|ht(k) = n

}
= Cd(k,n)∆t +o(∆t) (9)

Prob
{
ht+∆t(k) = n|ht(k) = n

}
= 1−

(
Ca(k,n)+Cd(k,n)

)
∆t +o(∆t)

Prob
{
ht+∆t(k) 6= n,n−1,n+1|ht(k) = n

}
= o(∆t).

The coarse grained adsorption/desorption rates are given respectively by

Ca(k,h) =
1
tI

[l −h(k)]

Cd(k,h) =
1
tI
h(k)e−bV̄(k) (10)

where

V̄(k) = J̄(0,0)
(
h(k)−1

)
+hext (11)

with the coarse grained interaction potential within the coarse cell given byJ̄(0,0) = 2U0/(l −1) whereU0 is

the mean strength of the potentialJ (Katsoulakis et al. 2003a, Katsoulakis et al. 2003b). The coarse-grained

energy content for CIN is given by the coarse-grained Hamiltonian

H̄(h) =
U0

l −1 ∑
k

h(k)
(
h(k)−1

)
+hext∑

k

h(k). (12)
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The canonical invariant Gibbs measure for the coarse-grained stochastic process is a product measure given by

Gm,l ,b (h) = (Zm,l ,b )−1eb H̄(h)Pm,l (dh) (13)

wherePm,l (dh) is an explicit prior distribution (Katsoulakis et al. 2003b). As shown in (Katsoulakis et al.

2003b), the coarse-grained birth/death process above satisfies detailed balance with respect to the Gibbs mea-

sure in (12) as well as a number of other attractive theoretical features. The simplest coarse-grained approxima-

tion given above assumes that the effect of the microscopic interactions on the mesoscopic scales occurs within

the mesoscopic coarse-mesh scale,∆x, otherwise systematic nonlocal couplings are needed (Katsoulakis et al.

2003b). The accuracy of these approximations is tested for diverse examples from material science elsewhere

(Katsoulakis et al. 2003a, Katsoulakis et al. 2003b, Katsoulakis and Vlachos 2003) and instructive idealized

coupled models (Katsoulakis et al. 2004, Katsoulakis et al. 2005a, Katsoulakis and Vlachos 2005b).

The practical implementation of the coarse-grained birth/death process in (8)–(11) requires specification of the

parameters,tI ,U0,q and the external potentialhext(~u j) as well as the statistical parameterb .

4. The Model Deterministic Convective Parametrization
A prototype mass flux parametrization with crude vertical resolution (Majda and Shefter 2001, Majda et al.

2004) is utilized to illustrate the fashion in which the coarse-grained stochastic model for CIN can be cou-

pled to a non-stochastic convective mass flux parametrization. The prognostic variables(u,q ,qeb,qem) are the

x-component of the fluid velocity,u, the potential temperature in the middle troposphere,q , the equivalent po-

tential temperatures,qeb andqem, measuring, respectively, the potential temperatures plus moisture content of

the boundary layer and middle troposphere. The vertical structure is determined by projection on a first baro-

clinic heating mode (Majda and Shefter 2001, Majda et al. 2004). The dynamic equations for these variables

in the parametrization are given by

¶ u
¶ t
− ¯̄a

¶ q

¶x
=−

(
C0

D
1
h

√
u2

0 +u2

)
u− 1

tD
u

¶ q

¶ t
− ā

¶ u
¶x

= S +Q0
R−

q

tR

h
¶ qeb

¶ t
=−D(qeb−qem)+

(
Cq

√
u2

0 +u2
)

(q ∗eb−qeb) (14)

H
¶ qem

¶ t
= D(qeb−qem)+Q0

R−
qem

tR

while the constantsQ0
R, q ∗eb are externally imposed and represent the radiative cooling at equilibrium in the

upper troposphere and saturation equivalent potential temperature in the boundary layer. The constantsh and

H measure the depths of the boundary layer and the troposphere above the boundary layer, respectively. The

typical values used here areh = 500 m andH = 16 km whileu0 = 2 m s−1. The explicit values for the other

constants used in (14) and elsewhere in this section can be found in (Majda and Shefter 2001, Majda et al.

2004).

The vertically integrated equivalent potential temperature given by

〈qe〉z =
1

H +h
[hqeb+Hqem]≈ h

H
qeb+qem
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satisfies the conservation equation

¶ 〈qe〉z
¶ t

=
(

C0
q

H

√
u2

0 +u2

)
(q ∗eb−qeb)+Q0

R−
qem

tR
. (15)

That is〈qe〉z is conserved in the absence of surface evaporative heating and tropospheric radiative cooling. The

crucial quantities in the prototype mass flux parametrization are the termsS andD whereS represents the

middle troposphere heating due to deep convection whileD represents the downward mass flux on the boundary

layer. The heating termS is given by

S = Msc
(
(CAPE)+)1/2

(16)

with M a fixed constant,sc the area fraction for deep convective mass flux, and CAPE= qeb− gq , the convec-

tively available potential energy. The downward mass flux on the boundary layer,D, includes the environmental

downdrafts,me, and the downward mass flux due to convection,m−, which are non-negative quantities so that

D = me+m−

m− =
1−Λ

Λ
mc, Λ precipitation efficiency (17)

mc = sc
(
(CAPE)+)1/2

,

and

me =−(1−sc)(we)−

(1−sc)we =−(mc +Hmux). (18)

In (16), (17), (18) above, the quantity(X)± denotes respectively the positive or negative part of the numberX.

5. Coupling of the Stochastic CIN Model into the Parametrization
The equations in (14)–(18) are regarded here as the prototype deterministic GCM parametrization when dis-

cretized in a standard fashion utilizing central differences on a coarse mesh∆x with ∆x ranging from 50 km to

250 km. In the simulations from (Khouider et al. 2003),∆x= 80 km. The coarse-grained stochastic CIN model

is coupled to this basic parametrization. First, the area fraction for deep convection,sc, governing the upward

mass flux strength, is allowed to vary on the coarse mesh and is given by

sc( j∆x) =
[
1− s̄I ( j∆x)

]
s+

c (19)

with s̄I is the average in (2)

with s+
c a threshold constant,s+

c = .002 (Majda and Shefter 2001, Majda et al. 2004). When the order

parametersI signifies strong CIN locally so that̄sI = 1, the flux of deep convection is diminished to zero while

with PAC locally active,s̄I = 0, this flux increases to the maximum allowed by the values+
c . To complete

the coupling of the stochastic CIN model into the parametrization, the coarse mesh external potential,hext(~u j),
from (11), (12), needs to be specified from the coarse mesh values,~u j . There is no unique choice of the external

potential but its form can be dictated by simple physical reasoning. In (Khouider et al 2003), the plausible

physical assumption is made that when the convective downward mass flux,m−, decreases, the energy for

CIN decreases. Since the convective downward mass flux results from the evaporative cooling induced by
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precipitation falling into dry air, it constitutes a mechanisms which carries negatively buoyant cool and dry

air from the middle troposphere onto the boundary layer hence tending to reduce CAPE and deep convection.

Thus, the decreasing of this flux will allow the boundary layer to be able self-consistently reduce the convective

inhibition so here

hext( j∆x, t) = m−( j∆x, t). (20)

The other parameters needed in the birth/death process are the characteristic timetI which varies over 5,10, and

20 days respectively in (Khouider et al 2003) while the microscale occupation fractionl = 10. This is consistent

with small scale variation of CIN on the scale of eight kilometers. Finally, the strength of local interaction,

bU0, is systematically varied in (Khouider et al. 2003) from boundary layer interactions favoring CIN with

bU0 > 0 to those favoring PAC withbU0 < 0. The parameterb is fixed tob = 1 so that variations in the mean

interaction strength,U0, will not directly alter the effects of the external field on the adsorption/desorption rates.

This completes the specification of the coarse-grained stochastic model.

6. The Effects of Stochastic Parametrization on Climatology and Fluctuations
It is shown in (Khouider et al 2003) that the above stochastic parametrization of CIN can have a substantial

effect on both the climatology and wave fluctuations in the idealized setting of a tropical Walker cell. See

(Khouider et al 2003) for the details.

7. Advantages of This Coarse-Grained Stochastic Lattice Procedure

1) Retain systematically the energetics of unresolved features through the coarse-grained Gibb’s measure

2) Has minimal computational overhead since there are rapid algorithms for updating birth death processes

3) Incorporates feedbacks of the resolved modes on the unresolved modes and there energetics through an

external field

4) Includes dynamical coupling through not only sampling the probability distribution of unresolved vari-

ables but also their evolving behavior in time is constrained by the large scale dynamics

Besides shallow boundary layer clouds, the moist convective processes associated with three cloud types, con-

gestus, deep convective, and stratiform, play a major role in interactions across scales in the tropics. Recently,

the authors have developed deterministic model parametrizations with three cloud types with a number of

attractive theoretical and observational features (Khouider and Majda 2005). The authors plan to extend the

coarse-grained stochastic models to this context which is more realistic prototype for GCM’S in the near future.
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